

Les appellations employées dans ce document et la présentation des données qui y figurent n'impliquent de la part du CAR/ ASP et du PNUE aucune prise de position quant au statut juridique des pays, territoires, villes ou zones, ou de leur autorité, ni quant au tracé de leur frontière ou limites. Les vues exprimées dans ce document d'information technique sont celles de l'auteur et ne représentent pas forcément les vues du PNUE/PAM-CAR/ASP.

Droits d'auteur: ©2015 - CAR/ASP

Le texte de la présente publication peut être reproduit, à des fins éducatives ou non lucratives, en tout ou en partie, et sous une forme quelconque, sans qu'il soit nécessaire de demander une autorisation spéciale au détenteur des droits d'auteur, à condition de faire mention de la source.

Pour des fins bibliographiques, citer le présent volume comme suit :

CAR/ASP - PNUE/PAM, 2015. Etude écologique pour la création d'une Aire Marine Protégée dans la partie nord-est des Iles Kerkennah en Tunisie. Par Cyrine BOUAFIF and Habib LANGAR. Ed. CAR/ASP. Activité de duplication, Tunis. 61 pages.

Crédit photographique de la couverture : CAR/ASP / Audimage.

Crédit photos: Cyrine BOUAFIF and Habib LANGAR.

L'activité de duplication est mise en œuvre dans le cadre du PNUE/PAM-FEM MedPartnership avec le soutien financier du Fonds de l'Environnement Mondial (FEM).

SOMMAIRE

1 ^{er} CHAPITRE : CONTEXTE GENERAL DE L'ETUDE	7
I. Contexte général de l'étude	
1. Evaluation de la situation actuelle	8
2- Situation géographique et présentation générale de la zone sensible N-E des îles Kerk	ennah
2ème CHAPITRE : CADRE PHYSIQUE DES KERKENNAH	11
I. Cadre topographique, géomorphologique et océanographique	
1. Origine, formations géologiques et géomorphologie	
2. Topographie sous-marine et bathymétrie	
3. Morphologie littorale, nature des fonds côtiers et bathymétrie	
4. Morphologie côtière	
5. Nature des fonds côtiers	
5.1. Les <i>Bhirats</i> ou vasières	
5.2. Les cordons de Posidonies ou <i>Tsirs</i>	
5.3. Les <i>Oueds</i> ou chenaux de marée	
6. Les conditions hydrodynamiques	
6.1. Les marées	
6.2. Courantologie et houles	18
3ème CHAPITRE : STRATEGIE RETENUE POUR L'INVENTAIRE ET	
L'EVALUATION DES HABITATS ET DES ESPECES	20
I. Déroulement chronologique de la mission	
II. Site d'étude	
III. Méthodes d'étude	
IV. Matériel et moyens mis en œuvre	
1. Moyens de navigation	
2. Moyens techniques	25
A CHARITRE . RECENTATION ET EVELOUTATION DEC DECHI TATO	27
4ème CHAPITRE : PRESENTATION ET EXPLOITATION DES RESULTATS	21
Bionomie benthique – Description des principales biocénoses et types de fonds	
I. L'étage Adlittoral : zone terrestre	
II. L'étage Supralittoral	
II.1. Vases	
Biocénose des laisses à dessication lente sous les salicornes	
II.2. Sables	
Biocénose des sables supralittoraux	
II.3. Fonds durs et roches	
Biocénose de la roche supralittorale	
III. Médiolittoral	
III.1. Vases, vases sableuses et sables des lagunes et estuaires	
Biocénose des sables vaseux et vases	
III.2. Sables	
Biocénose des Sables Médiolittoraux	33

III.3. Fonds durs et roches	34
Biocénoses de la roche médiolittorale supérieure et inférieure	34
IV. INFRALITTORAL	38
IV.1. Sables fins plus ou moins envasés	38
Biocénose des sables vaseux superficiels de mode calme	38
Association à Cymodocea nodosa	
IV.2 Herbier à Posidonia oceanica	39
Biocénose de l'herbier à Posidonia oceanica	39
Ecomorphose de l'herbier tigré	
Caractérisation de l'herbier à Posidonia oceanica	42
Biocénose des algues infralittorales	43
Faune benthique	45
5ème CHAPITRE : SYNTHESE DES POTENTIALITES NATURELLES	
ET CULTURELLES ET LES VULNERABILITES DE LA ZONE D'ETUDE	48
I. Evaluation des potentialités naturelles et culturelles de la zone Nord Est de l'archipe	el des
Kerkennah	
1- Biodiversité marine	48
Une biodiversité élevée et un paysage marin remarquable	48
Flore remarquable	48
Faune remarquable	49
Une avifaune diversifiée	49
2- Valeurs sociales et culturelles	
Des valeurs sociales et culturelles indéniables	50
Une protection naturelle	50
II. Vulnérabilité & principaux risques et menaces exercés sur le biotope	50
1- Menaces d'origine anthropique	
1.1. Les menaces concernant l'ensemble de l'archipel des Kerkennah	50
Chalutage et surexploitation des ressources vivantes	50
Utilisation du sable de la mer pour les constructions	
Les menaces spécifiques à la partie Nord-Est de l'archipel	
Braconnage et pêche illégale	52
Destruction de la couverture végétale	
Déclin de stock des éponges.	
2- Menaces d'origine naturelle	
Insularité	
Élévation du niveau de la mer	
Erosion côtière et recul du trait de côte	
Extension hétérogène des surfaces de Sebkhas	
Les problèmes sociaux : un facteur qui amplifie les menaces	
Synthèse des menaces et vulnérabilités	57
CONCLUSION	58
REFERENCES BIBLIOGRAPHIQUES	
ANNEXES	
FSD	85

Liste des Figures

- Figure 1 Localisation-toponymie-surface des îles et îlots de l'archipel des Kerkennah
- Figure 2 Vue générale de l'îlot Roumadiya
- Figure 3 Types de côtes de la zone d'étude
- Figure 4 Carte des Kerkennah et de leurs hauts-fonds entre 0 et -2 m (en pointillés) et les *Bhirats* (B)
- **Figure 5** Côte basse à micro falaise (entre 0.5 et 1.0 m de hauteur) montrant des débris végétaux rejetés en épaves (laisses de *Cymodocea nodosa* et *Cystoseira* sp.)
- Figure 6 Les sansouires, formation végétale caractéristique, composée de plantes halophiles ici des Salicornes les rides de dépôts sédimentaires "*Ripple-marks*" sur le sable provoquées par les courants sont bien visibles.
- **Figure 7** Principales caractéristiques de la morphologie côtière des îlots situés au Nord Est de l'archipel des Kerkennah
- Figure 8 Topographie sous-marine, courants principaux et marée dans l'archipel des Kerkennah
- Figure 9 Localisation de la zone d'étude dans la partie Nord Est de l'archipel des Kerkennah
- Figure 10 (a) Divers matériel utilisé (b) et (c) Sondeur à main utilisé pour les mesures bathymétriques (d) (e) Perche de navigation utilisée pour déterminer le type de fond (e) l'extrémité de perche trempée de vase (f) Observations à l'aide de la Lunette de Calfat (g) GPS et ardoise (h) Prise de vue sous-marine
- **Figure 11** Image satellite de la zone étudiée découpée en 24 parcelles
- Figure 12 Les 2 embarcations utilisées pour la prospection du terrain
- Figure 13 Biocénose des laisses à dessication lente sous les salicornes (*Arthrocnemum*, *Salicornioideae*) à marée basse (A) et à marée haute (B)
- **Figure 14** Faciès des sables sans végétation avec débris dispersés avec des graviers issus de la dégradation du beach-rock (gauche) et des feuilles de phanérogames échouées (droite).
- Figure 15 Placage de grès corrodé avec des signes d'érosion (flèche)
- Figure 16 Substrat de l'estran formé de sable envasé avec débris coquillers et quelques graviers

- Figure 17 Estran sablo-vaseux à marée basse (en période de vives-eaux) couvert essentiellement par des tortillons et buttes d'arénicoles (Vers polychètes) et des macropphytes échouées (*Cvstoseira*)
- Figure 18 Beach-rock observé dans l'étage médiolittoral de l'archipel des Kerkennah
- Figure 19 Concrétions organogènes littorales des algues photophiles
- Figure 20 Photo en Haut :détail d'un concrétionnement biogène montrant l'incorporation de fragments de grès calcaire (flèche jaune) composé de débris coquiller (flèche rouge) et de polychètes-Serpules (flèche verte) (); Photo en bas : concrétionnement biogène formé d'une couche fine d'algue calcaire encroûtante, (1) et (3) des coquilles de bivalves, (2) des foraminifères benthiques (ici *Peneroplis pertusus*) et (3) des espèces de la famille de *Vermetidae*
- Figure 21 (A) Prairie à *Cymodocea nodosa* et *Caulerpa prolifera* entourant l'éponge *Sarcotragus muscarum* et (B) *Aplysina aerophoba*; (C) et (D) prairies à à *Cymodocea nodosa* sur fond sableux-vaseux
- Figure 22 Herbier tigré (A) Configuration typique, (B) Configuration en cercles, (C) Configuration en cordon, (D) une bande de *Posidonia oceanica* affleurante entrecoupés par une mosaïque de Cymodocea nodosa et (E) Cordons d'herbiers tigrés (« *Tsir* ») délimitant une « *Bhirat* » où des bandes de *Posidonia oceanica* isolées sont éparpillées.
- **Figure 23** Chenal inter-bandes de *Posidonia oceanica* tapissé par une pelouse à *Cymodocea nodosa* et *Caulerpa prolifera*
- **Figure 24** (A) Placage rocheux couvert d'algues photophiles essentiellement *Padina pavonica*, *Laurencia* et des *Cystoseira* (B) Amas de Cystoseires en forme libre
- Figure 25 Pinna nobilis dans les prairies à Cymodocea nodosa et Caulerpa prolifera
- Figure 26 Braconnage des tortues marines Caretta caretta dans l'archipel des Kerkennah.
- Figure 27 Evolution de l'occupation du sol et des surfaces des *Sebkhas* de l'archipel entre 1984 (A) et 2011 (B)

Liste des Tableaux

- **Tableau 1** Variation de l'amplitude de la marée en fonction du cycle de la marée
- Tableau 2
 Caractéristiques des embarcations utilisées lors de la prospection
- **Tableau 3** Moyens logistiques mis en œuvre pour la mission de prospection marine de la partie Nord Est de l'archipel des Kerkennah
- **Tableau 4** Biocénoses benthiques identifiées lors de l'étude, classées par étage bathymétrique selon la typologie des biocénoses benthiques de Méditerranée (PNUE-PAM-CAR/ASP, 2007 ; Michez *et al.*, 2014)
- **Tableau 5** Paramètres phénologiques de l'herbier à *Posidonia oceanica* dans la partie Nord Est de l'archipel des îles Kerkennah, en Juillet 2015 (moyenne ± intervalle de confiance 95%). L.A.I. = Leaf Area Index. Coefficient A = (Nombre de feuilles Ad+In cassées / nombre total de feuilles) x 100)
- **Tableau 6** Liste des espèces de macrophytobenthos observées (Magnoliophytes exclues)

Liste des planches

Planche 1 Etude et caractérisation de l'état de l'herbier de Posidonies
Planche 2 les différentes biocénoses distribuées dans la zone d'étude

Planche 3 Les différents faciès concrétions organogènes dans la zone d'étude
Planche 4 Les principales biocénoses de la partie Nord Est des Kerkennah

Planche 5 Les espèces du genre *Cystoseira* rencontrées dans la zone

Liste des acronymes et des abréviations

AAO Association des Amis des Oiseaux

ACI Accord de Coopération Interne

AECID Agence Espagnole de Coopération Internationale pour le Développement

AMP Aire Marine Protégée

APAL Agence de Protection et d'Aménagement du Littoral.

APMC Aire Protégée Marine et Côtière

CAR/ASP Centre d'Activités Régionales pour les Aires Spécialement Protégées

CE Commission Européenne

cm centimètres

cm/s Centimètres par seconde

Division de la Mise en œuvre des Politiques Environnementales / Division

of Environmental Policy Implementation

DGEF Division of Global Environment Facility Coordination

DPM Domaine Public Maritime

FEM Fonds pour l'Environnement Mondial

FFEM Fonds Français pour l'Environnement Mondial

FSD Formulaire Standard des Données

GIS Systèmes d'Information Géographique

ha Hectareskm Kilomètrem Mètre

m/s mètre par seconde

MedMPANet Mediterranean Marine Protected Areas Network

MedPartnership Strategic Partnership for the Mediterranean Sea Large Marine Ecosystem

mm Millimètre

PAM Plan d'Action pour la Méditerranée
PAN les Plans d'Action Nationaux

PAS-BIO

Programme d'Action Stratégique pour la Conservation de la Diversité Biologique

en région méditerranéenne

PME Petite et moyenne entreprise

PNUE Programme des Nations Unies pour l'Environnement

Protocole Protocole relatif aux Aires Spécialement Protégées et à la Diversité Biologique en

ASP/DB Méditerranée

SSFA Accords de financement à petite échelle / Small Scale Funding Agreement

UICN Union International pour la Conservation de la Nature

WWF World Wilde life for Nature – Fonds Mondiale pour la Nature

ZICO Zone Importante pour la Conservation des Oiseaux d'eau

CHAPITRE I : SITUATION ET CONTEXTE GENERAL DE L'ETUDE

I. Contexte général de l'étude

La présente étude s'intègre dans le cadre de la mise en œuvre du "Partenariat Stratégique PAM/PNUE-FEM pour le grand écosystème marin de la Méditerranée" (Partenariat Med) et notamment de sa Composante 3 "Conservation de la Diversité Biologique: Mise en œuvre du PAS BIO et des PAN correspondants" / Sous-composante 3.1 "Conservation de la biodiversité marine et côtière dans le cadre de la mise en place d'un réseau méditerranéen d'Aires Marines Protégées (AMP)", le Centre d'Activités Régionales pour les Aires Spécialement Protégées (CAR/ASP) met en œuvre le "Projet Régional pour le Développement d'un Réseau Méditerranéen d'Aires Protégées Marines et Côtières (AMP) à travers le renforcement de la Création et de la Gestion d'AMP" (Projet MedMPAnet).

Le Projet MedMPAnet est financé par la Commission Européenne (CE), l'Agence Espagnole de Coopération Internationale pour le Développement (AECID) et le Fonds Français pour l'Environnement Mondial (FFEM), et bénéficie à 12 pays méditerranéens : Albanie, Algérie, Bosnie-Herzégovine, Croatie, Egypte, Liban, Libye, Maroc, Monténégro, Syrie, Tunisie et Turquie. Il est également prévu d'impliquer l'Autorité Palestinienne.

Ce projet vise à accroître la capacité à conserver la biodiversité marine et côtière régionalement importante par la création, dans la région méditerranéenne, d'un réseau écologiquement représentatif, cohérent et efficace appuyé par un réseau d'ampleur régionale des gestionnaires d'AMP et cela selon les dispositions du "Protocole relatif aux Aires Spécialement Protégées et à la Diversité Biologique" (Protocole ASP/DB) de la Convention de Barcelone.

Parallèlement au projet MedMPAnet, le CAR/ASP et le PNUE ont signé un Accord de Financement à Petite Echelle (SSFA). En effet, sur la base de l'Accord de Coopération Interne (ACI) entre le PNUE / PAM et le PNUE / DGEF (maintenant partie du PNUE DEPI), le PNUE s'engage à coopérer avec le CAR / ASP à l'égard du projet / programme intitulé «Partenariat stratégique pour la Méditerranée Grand Ecosystème Marin - composante régionale: mise en œuvre des actions convenues pour la protection des ressources environnementales de la Méditerranée et de ses zones côtières (MedPartnership) » dans treize pays de la Méditerranée.

Le principal objectif de cet SSFA est d'entreprendre des activités supplémentaires pour la promotion des meilleures "Pratiques Reproductibles" pour la création d'AMP en Méditerranée. Le projet initial du MedPartnership, des ressources allouées à cette fin et des activités de réplication ont été présentés, discutés et approuvés lors de la 4ème réunion du Comité de Pilotage du MedPartnership (Hammamet, Tunisie en février 2014).

La partie Nord-Est des îles Kerkennah disposant aujourd'hui du statut de zone sensible littorale constitue l'un des cinq sites sélectionnés pour bénéficier du statut d'Aire Protégée Marine et Côtière (APMC) par le Programme National pour la Création des Aires Marines et Côtière Protégées en Tunisie mené par l'Agence de Protection et d'Aménagement du Littoral (APAL), qui fait partie de la politique nationale sur la biodiversité, telle que définie par le

Plan national pour la biodiversité approuvé en 1998, et qui vise à établir un réseau d'aires protégées tout le long des côtes tunisiennes.

Les zones sensibles littorales, ont été définies par la loi portant création de l'APAL comme étant "des espaces qui caractérisent le patrimoine naturel national, présentant un ensemble d'éléments dans un écosystème fragile et constituant un paysage naturel remarquable, menacé par la dégradation ou l'utilisation irrationnelle et soumis à une pression anthropique qui risque de les déstabiliser".

1-Evaluation de la situation actuelle

Les APMC en Tunisie ont devancé leur encadrement juridique. En effet, on a vu naître des AMP avant la promulgation de la loi du 21 juillet 2009 relative aux APMC.

Le programme national pour les APMC a retenu cinq sites et s'est déroulé en deux phases. La première phase est la création du Parc National de l'archipel de la Galite. La deuxième phase concerne l'extension du réseau d'APMC qui consiste à mettre en place quatre autres sites : les îles de Zembra et de Zembretta, les îles Kuriat, la partie Nord-Est de Kerkennah et le littoral allant de Cap Negro à Cap Serrat.

Avec la promulgation de la loi n°2009-49 du 21 juillet 2009, la Tunisie s'est enfin dotée d'un cadre spécifique à ces espaces. Cette loi a procédé à la définition de ces aires et a précisé leur régime juridique qui est plus rigoureux que celui du littoral ou du Domaine Public Maritime (DPM). Ses principales dispositions sont inspirées des normes retenues à l'échelle internationale en la matière et notamment celles établies par l'Union International pour la Conservation de la Nature (UICN).

La définition d'une AMP selon l'article 2 de la loi du 21 juillet 2009 précitée, précise que : « Au sens de la présente loi on entend par « les aires marines et côtières protégées» les espaces désignés par la loi, en vue de protéger les milieux naturels, la flore, la faune, les écosystèmes marins et côtiers présentant un intérêt particulier d'un point de vue naturel, scientifique, instructif, récréatif, ou éducatif ou qui constituent des paysages naturels remarquables devant être préservés » (Source Journal Officiel de la République Tunisienne JORT N°58)

Cette définition large, traduit la difficulté que rencontrent les instruments régionaux et internationaux à définir les AMP.

Les îles Kerkennah sont classées comme réserve naturelle. Cet archipel constitue une importante voie de migration pour les oiseaux traversant la Méditerranée entre le golfe de Gabès et le Sud de l'Italie. Le site est classé comme Zone Importante pour la Conservation des Oiseaux d'eau (ZICO) par l'association mondiale « Bird Life International » et l'Association des Amis des Oiseaux (AAO) depuis 2001 (Bird Life International, 2015). Aussi, la partie Nord Est du site fait l'objet de création d'une AMP depuis 2001.

Dans ce cadre, et afin d'aider à l'élaboration d'un plan de zonage des habitats marins remarquables, qui sera un outil de base à l'élaboration du plan de gestion de la partie marine de cette future APMC, une première phase concernant l'étude de gestion de la zone sensible des îlots Nord-Est de Kerkennah a été réalisée par l'APAL en 2001, elle vise à connaître l'évolution spatio-temporelle de ce site et d'identifier des scénarios d'évolution naturelle. Dans cette phase, les résultats obtenus ont permis de déterminer l'état d'équilibre du site, d'identifier les risques potentiels qu'il peut encourir et d'évaluer les potentialités et aptitudes à

l'aménagement dans les contextes de la protection de l'environnement et de la valorisation sociale, économique et culturelle.

Le présent travail, considéré comme complémentaire à celui réalisé en 2001 par l'APAL, a pour objectif d'apporter des informations plus poussées sur les éléments naturels à valeur patrimoniale présents autour des îles de la zone concernée. Un intérêt particulier sera porté à la caractérisation et la cartographie des herbiers de phanérogames marines *Posidonia oceanica* L. (Delile), les espèces et habitats d'importance méditerranéenne, spécialement celles figurant dans les annexes du Protocole ASP. Un Formulaire Standard des Données (FSD) pour les inventaires nationaux de sites naturels d'intérêt pour la conservation sera également complété.

2- Situation géographique et présentation générale de la zone sensible N-E des îles Kerkennah

Situé entre 11° et 11° 20' à l'Est du méridien de Greenwich et entre 34° 36' et 34° 50' de latitude Nord, à l'entrée du golfe de Gabes (Sud-Est tunisien), l'archipel des Kerkennah (Qarqna) est distant d'une vingtaine de kilomètres (12 miles) de la côte tunisienne à la hauteur de la ville de Sfax. Il est constitué de deux îles principales : Gharbia (Dzira ou Mellita), au Sud-Ouest, d'une superficie de 49 km² et Cherguia (ou Kerkena), au Nord-Est, d'une superficie de 110 km². Cette dernière est elle-même escortée d'une douzaine d'îlots (ex : Charmandia, Sefnou, Roummadiya, Rakadiya, Lazdad, Gremdi, Haj Hmida). C'est un archipel plat à paysage de basses steppes, allongé du Sud-Ouest vers le Nord-Est sur une trentaine de kilomètres mais ne couvrant qu'une superficie près de 160 km² en raison de son étroitesse : sur ces lambeaux de terre aucun point n'est à plus de 5 km du rivage, d'où l'importance de la mer dans le paysage naturel et son évolution, et depuis toujours, dans la vie des Kerkenniens (Trousset, 2005).

Les deux îles sont reliées entre-elles par une route digue construite au-dessus de l'ancienne voie romaine dite El Kantra. Les îles sont plantées de palmiers dont la hauteur ne dépasse pas une vingtaine de mètres. Au Nord-Est de l'Archipel des Kerkennah, cinq îlots prolongent l'île principale.

La présente étude s'intéresse au secteur Nord-Est de Kerkennah, au large de la grande île de Chergui, dont l'altitude est toujours inférieure à 4m mètres (atteinte à Sefnou). Ce secteur et la partie marine contigüe abritent cinq îlots (Fig. 1) :

- **Gremdi** est le plus important du point de vue de la superficie (environ 196 ha). Il est situé à 900 m, à l'Est de El Ataya. Actuellement, il est couvert d'exploitations agricoles constituées d'oliviers, de palmiers et de cultures céréalières et fourragères, ces cultures annuelles sont très largement tributaires de la pluviométrie.
- **CS Roumadiya** est un îlot,d'une superficie de 167 ha, situé à 1,3 km au Nord-Est de la presqu'île d'Enf Erkik. C'est le plus bas des îlots avec une altitude maximale de 1 m; 46% de la surface est occupée par des *Sebkhas* (Fig. 2).
- cs Ramadiya est également un îlot plat, d'une superficie de 4,8 ha, situé à 2 km à l'Ouest de la presqu'île d'Enf Erkik. 38% de la superficie est occupée par des *Sebkhas*, le reste est recouvert de maquis et de broussailles.

Sefnou est un îlot inhabité, d'une superficie de 53 ha, situé à 1 km au Nord-Est de Rass Bou Nouma. Il est exploité occasionnellement pour la production céréalière et pour le pâturage.

Charmadia, couvre une superficie de 3,3 ha, il est situé à 3 km au Nord de l'île Chargui. C'est un îlot inhabité occupé par du maquis et des broussailles.

Fig. 1. Localisation-toponymie-surface des îles et îlots de l'archipel des Kerkennah (Source : Etienne, 2014).

Fig.2. Vue générale de l'îlot Roumadiya.

CHAPITRE II: CADRE PHYSIQUE DES KERKENNAH

I. Cadre topographique, géomorphologique et océanographique

1. Origine, formations géologiques et géomorphologie

La séparation de l'archipel et du continent a eu lieu lors de la dernière phase de réchauffement qui a provoqué une élévation du niveau de la mer, accentuée dans l'archipel, par une subsidence importante qui se poursuit encore aujourd'hui (Paskoff & Sanlaville, 1983; Oueslati, 1986). Les îles de l'archipel des Kerkennah entrent dans la catégorie des îles de désarticulation selon la classification des îles d'Aubert de la Rüe (1935) reprise par Bernardie et Taglioni en 2005. Cette classification est basée sur leur processus de formation et leur éloignement des masses continentales (Etienne, 2014). Elles sont isolées du continent par variation du niveau marin, dépendantes et continentales car géologiquement solidaires du continent. Situé dans le golfe de Gabès, l'archipel des Kerkennah émerge du plateau continental à l'Ouest de l'agglomération de Sfax (Etienne, 2014).

L'archipel des Kerkennah se caractérise par l'opposition impressionnante entre ses côtes orientales très rectilignes et ses côtes occidentales et septentrionales très découpées. Ces caractéristiques morphologiques sont dues à deux causes ; d'abord, une exposition de la côte Ouest à une dynamique active en particulier à la permanence et à la dominance, au cours de l'année, des houles de secteur Nord et Nord-Ouest et ensuite à des mouvements néotectoniques et en particulier l'accident N60¹ sont responsables de l'aspect rectiligne de la côte des îles Kerkennah.

Les caractéristiques géomorphologiques du front de mer des îles Kerkennah, montrent que les 162 km de côtes sont constituées par 95 km de bordure des *Sebkhas*, 43 de falaises rocheuses et 24 km de falaises sablo-argileuses. Cette topographie est le prolongement immergé de la topographie continentale.

2. Topographie sous-marine et bathymétrie

La topographie de l'archipel est très basse, émergeant à peine d'une vaste zone de hauts fonds du Golfe de Gabès – le point culminant se situe à 13 m au-dessus de la surface de la mer. L'archipel ,est caractérisé par de larges dépressions salinisées, chotts ou *Sebkhas*, aujourd'hui impropres à l'agriculture, alternant avec des reliefs plus ou moins marqués qui correspondent à des croûtes calcaires quaternaires recouvertes partiellement de sables éoliens et recouvrant elles-mêmes des formations argileuses rouges mio-pliocène que la mer entaille en falaise du côté Ouest (Trousset, 2005).

Les îlots présents au Nord-Est de l'archipel, au large de la grande île de Chergui, sont inhabitables du fait de l'absence de sources d'eau, mais ils ont été utilisés pour faire paître les troupeaux jusqu'à une période récente, en particulier les deux îlots les plus grands (Roumadiya et Gremdi), et pour y planter des figuiers et oliviers (APAL, 2001).

Les côtes de l'archipel des Kerkennah sont majoritairement basses et les falaises les plus hautes de l'archipel atteignent au maximum 11 m. Les côtes de l'archipel sont assez variées,

¹ Il s'agit des faisceaux de failles de direction tectonique Nord 60 qui correspondent localement à des chevauchements ou des coulissements et se côtoient avec la direction atlasique qui correspond à la direction des plis atlasique ébauchés depuis le Tortonien (-11 MA)

allant de la falaise vive très exposée, aux marais maritimes en situation d'abris. Sur les façades Sud et Ouest des îles, le tracé côtier est plutôt rectiligne. Ces côtes sont également protégées des fortes houles, qui sont relativement rares, par une rupture de pente située à quelques centaines de mètres du rivage. Ces obstacles naturels sont autant de brises lames protectrices. A l'inverse, sur la façade Nord, le tracé côtier est très découpé (Fig. 3) car érodé par les tempêtes marines engendrées par des vents forts arrivant du Nord ou du Nord-Ouest (Dahech, 2007). La hauteur des falaises de l'archipel varie de quelques centimètres à environ 11 mètres au niveau de Jorf. Les falaises sont toutes actives ce qui indique une érosion actuelle des côtes de l'archipel. Les côtes les plus basses sont composées de plages et des sorties de *Sebkhas* ou de marais maritimes.

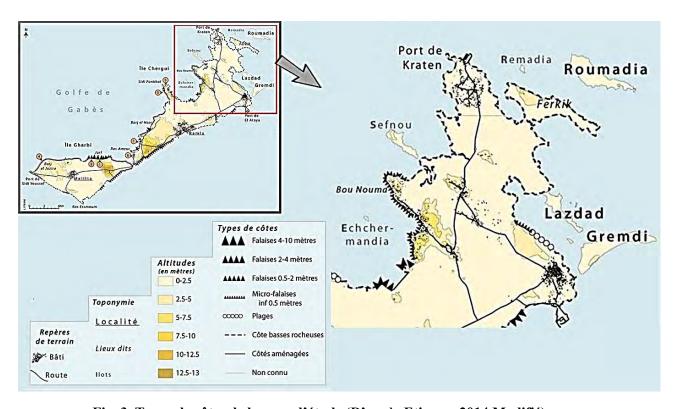


Fig. 3. Types de côtes de la zone d'étude (D'après Etienne, 2014 Modifié).

3. Morphologie littorale, nature des fonds côtiers et bathymétrie

L'archipel est situé sur le plateau continental du golfe de Gabès et représente la partie émergée d'un vaste plateau sous-marin dont les hauts-fonds s'étendent de 9 à 50 km autour des îles. Ce sont ces hauts fonds que Jean Despois appellera en 1936 « Bancs de Kerkennah ». La bathymétrie est très faible et la profondeur varie généralement entre 0 et 5 m mais le plus souvent cette profondeur reste inférieure à 2 m (Fig. 4). Elle atteint 20 m dans les chenaux et 30 m dans les fosses. L'isobathe des 200 mètres se trouve parfois à près de 400 km des côtes de l'archipel. Les fonds sous-marins de la région, considérée correspondent à la plus grande largeur du plateau continental du pays, avec une avancée considérable du "Môle des Kerkennah" à des profondeurs inférieures à 50 m sur le "Plateau Tunisien", dont la rupture de pente se situe entre 150 et 300 m (Pergent & Kempf, 1993).

Les îles sont entourées de hauts fonds, entrecoupés de chenaux pouvant atteindre la profondeur de 13 mètres, d'accès très difficile aux navires autres que les embarcations à fond plat, *felouques* ou *loudes* utilisés depuis l'antiquité par les populations de la côte orientale de la Tunisie.

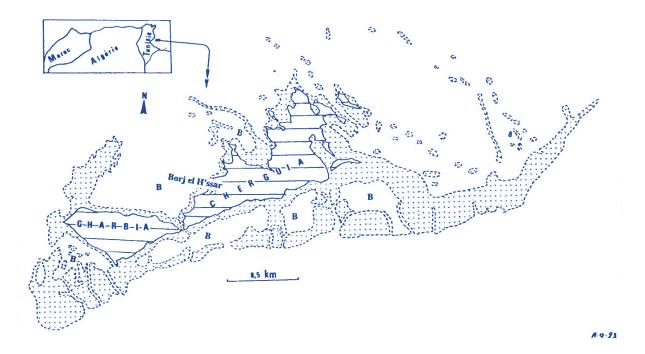


Fig. 4. Carte des Kerkennah et de leurs hauts-fonds entre 0 et -2 m (en pointillés) et les *Bhirats* (B) (d'après A. Oueslati, 1995).

Cette étendue de hauts-fonds, qui englobent l'archipel prend toute son ampleur au Nord à partir du Ras Kaboudia (le cap Brachodes ou Caput vada des Anciens), où l'isobathe 40 m s'éloigne jusqu'à 65 km de la côte et se prolonge au Sud jusqu'à la latitude de Mahrès. Deux chenaux principaux : celui de la Louza et celui de Sfax la pénètrent respectivement au Nord et au Sud, entre les îles et le continent (Trousset, 2005). L'origine de ces chenaux est controversée : il pourrait s'agir d'anciens lits d'Oueds datant de l'époque où les Kerkennah se trouvait en position continentale ou de chenaux de marées (Oueslati, 1986) aujourd'hui empruntés par les courants sous-marins.

4. Morphologie côtière

L'archipel des Kerkennah, se caractérise par l'opposition frappante de ses côtes occidentales très rectilignes à ses côtes septentrionales très découpées. Ces traits morphologiques sont essentiellement dus à l'exposition de la côte Ouest à une dynamique active provoquée par des houles permanente du secteur nord et nord-ouest d'une part et aux jeux néotectoniques actifs d'autre part (APAL, 2001). La morphologie côtière des îlots est variée, on peut distinguer quatre types de côtes : les falaises, les côtes rocheuses, les plages et les côtes à marais maritimes.

• Les falaises : Il s'agit des formes d'érosion due à la dynamique des houles. Ces falaises façonnent la plus grande partie de la côte ce qui révèle la fragilité de l'archipel, et sont le plus souvent petites, dépassant rarement les 3 à 4 m et très variables par leur lithologie et leur modelé (Fig. 5). Dans la partie Nord-Est de petites falaises, telles que celles de Sefnou, Gremdi et Roumadiya sont observées.

Fig. 5. Côte basse à micro falaise (entre 0.5 et 1.0 m de hauteur) montrant des débris végétaux rejetés en épaves (laisses de *Cymodocea nodosa* et *Cystoseira* sp.).

- Les côtes rocheuses basses : Elles sont également nombreuses ; essentiellement au Nord-Est de l'archipel et sont toujours taillées dans des roches carbonatées.
- Les plages, occupant une place très secondaire au niveau des îlots, sont situées généralement au fond des criques ou au pied des falaises. Elles sont également très peu épaisses et étroites ce qui les rend très vulnérables.
- Les marais maritimes se développent sur des côtes basses, très peu pentues et abritées des courants forts permettant ainsi le stockage de matériaux fins ou bien façonnés dans les sols de *Sebkhas*. Ils occupent une place nettement plus importante que les plages, et ils comportent souvent deux espaces particuliers : le premier, le plus proche de l'eau et toujours humide, est composé des matériaux les plus fins, souvent vaseux, il est dépourvu de végétation, il s'agit de la *Slikke*. Le second, en amont, est également submersible par les marées hautes, il est couvert d'un tapis végétal halophile de type salicorne (Fig. 6), il s'agit du *Schorre* (Etienne, 2014). Ils montrent partout des signes d'érosion et sont parfois soumis à un recul important. L'ensemble du marais maritime est traversé de chenaux de marée permettant l'écoulement des eaux marines (Verger, 1995). Les dépôts marins ainsi que les chenaux de marée permettent l'implantation de végétation halophile sur leurs bords (Etienne, 2014).

Fig. 6. Les sansouires, formation végétale caractéristique, composée de plantes halophiles ici des Salicornes – les rides de dépôts sédimentaires "*Ripple-marks*" sur le sable provoquées par les courants sont bien visibles.

Les îlots présentent tous une morphologie côtière semblable, on peut en effet distinguer au niveau des différents îlots, des caractéristiques communes (Fig. 7).

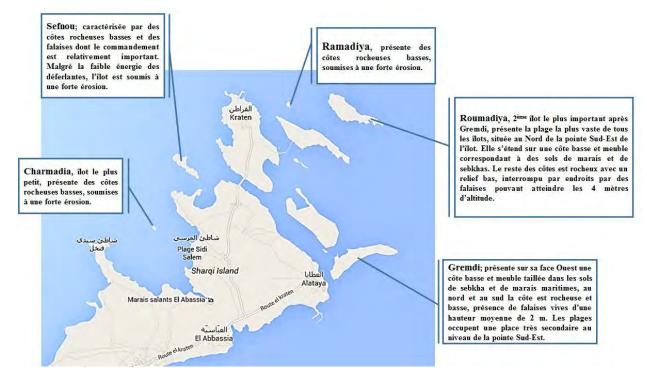


Fig. 7. Principales caractéristiques de la morphologie côtière des îlots situés au Nord Est de l'archipel des Kerkennah.

5. Nature des fonds côtiers

Le platier des Kerkennah proprement dit est une vaste plate-forme de profondeur comprise entre 2 et 3 m. La morphologie du platier des Kerkennah est très complexe et caractérisée par des vasières ou « *Bhirats* », des cordons ou « *Tsirs* » et des chenaux de marées ou « *Oueds* » (APAL, 2001 ; Etienne, 2014) on distingue :

5.1. Les Bhirats ou vasières

Elles désignent des dépressions allongées parallèles à la côte Est et dont la profondeur varie de 2 à 3 m pouvant parfois dépasser 5 m. Celles-ci comportent des eaux très calmes et elles sont généralement entourées par des cordons de Posidonies (*Posidonia oceanica*) qui les protègent de l'agitation de l'eau et favorisent la sédimentation des particules fines. Cette configuration permet à certaines espèces de phanérogames marines, telle que la Cymodocée (*Cymodocea nodosa*) et d'algue, comme la Caulerpe (*Caulerpa prolifera*), de s'y installer et tapisser le fond en formant de vastes prairies qui favorisent la reproduction de différentes espèces animales.

Le long de la côte Est de Chergui, on peut identifier quatre vasières dont les plus importantes, sont Bhiret El Abbassia et Bhiret El Gremdi. Ces *Bhirats* en forme de ménisques allongés parallèlement aux côtes sont ouvertes sur le large à travers des Oueds ou chenaux de marée (APAL, 2001).

Au Nord de Chergui, la plus vaste des *Bhirats* a une profondeur moyenne de 4 m et peut dépasser 5 m. Elle sépare les îlots du Nord (Roumadiya) de la zone appelée Hmadet El Babouch. A l'Ouest de Chergui, on en dénombre deux : *Bhiret* Sefnou et *Bhiret* Sidi Fredj. Ces *Bhirats* sont totalement entourées par des cordons – *Tsirs* (APAL, 2001).

5.2. Les cordons de Posidonies ou Tsirs

Ce sont des bandes étroites de Posidonies et parfois de prairies de Caulerpes, très peu profondes pouvant émerger à basse mer, elles mesurent plusieurs kilomètres de longueur. Appelés également bancs, ces cordons qui séparent les vasières les unes des autres sont constitués de débris biogènes coquilliers.

Selon APAL (2001), deux catégories de bancs sont identifiées :

Les bancs parallèles à la côte : Parallèlement à la côte Est, un long cordon s'étend depuis le promontoire de Ras El Besch au Sud-Ouest, à Sekiet Hmida où il prend une direction Nord-Nord-Est. Ce cordon d'environ 77 km de long contourne le platier au Sud et au Nord. Les hauts-fonds de ce cordon pointent à quelques dizaines de centimètres de la surface lors de la basse mer. Au-delà, la rupture de pente est amorcée et on arrive rapidement aux isobathes -5 et -10 mètres. Ce long cordon est interrompu de passes très étroites qui s'ouvrent sur des Oueds se dirigeant vers le large.

Au Nord-Est de Chergui, le platier le plus vaste de la plate-forme des Kerkennah présente des bancs orientés Nord-Ouest / Sud-Est parallèlement à la côte comme celui de Roumadiya, sur lequel pointe l'île du même nom (APAL, 2001).

Les bancs perpendiculaires à la côte : Ils ont la particularité de prendre naissance à partir de l'île et de se prolonger vers le domaine marin, sous forme de constructions sédimentaires littorales (flèches) ou de rides continentales.

A l'Est de l'archipel ces bancs relient la côte au banc principal qui lui est parallèle. Ces bancs séparent alors les *Bhirats* les unes des autres. A l'Ouest, ces bancs sont plus larges et délimitent à leur tour des vasières (APAL, 2001).

5.3. Les Oueds ou chenaux de marée

Ces *Oueds* présentant de longues dépressions souvent sinueuses de 5 à 12 m de profondeur et jouent un rôle de « fournisseurs de sédiments fins » qui se déposent au fond des *Bhirats* et dont les versants sont occupés par des pelouses denses de Caulerpes. Le plus important est l'*Oued* Mimoun par lequel les embarcations peuvent approcher le petit port de pêche d'El Ataya (Trousset, 2005); à l'amont de cet Oued confluent quatre Oueds d'importance secondaire, le reliant aux *Bhirats* d'El Abbassia et d'El Gremdi. D'autres Oueds sont également importants tels que : Essmoum, Saâdoun, ou Bouzrara (APAL, 2001). Tous les Oueds (12 au total) sont situés à l'Est des îles. Ils découpent perpendiculairement le grand banc et se comportent comme exutoire des *Bhirats* vers le large.

Des courants forts empruntent ces Oueds (2 à 3 nœuds dans les chenaux (Pergent & Kempf, 1993). En effet, au niveau de l'Oued Mimoun, en période de mortes eaux, les courants ne dépassent pas 0.75 m.s⁻¹. Au niveau des passes les plus étroites et en période de vives eaux, les courants peuvent atteindre 1.5 m.s⁻¹. Les Oueds sont empruntés par les bancs de poissons et les dauphins qui remontent les chenaux pendant le flot et les descendent pendant le jusant. Ces Oueds servent aussi de chenaux de navigation pour les barques et représentent la seule voie d'accès vers le large (Golfe de Gabès) (APAL, 2001).

6. Les conditions hydrodynamiques

6.1. Les marées

La marée est à peine perceptible sur la plupart des côtes méditerranéennes, mais la zone de l'archipel des Kerkennah, de Sfax, du Golfe de Gabès, échappe à cette règle et montre des oscillations périodiques du niveau marin significatives. La marée est de type semi-diurne. Son amplitude est maximale au fond du golfe (1,8 m en vive-eau et 0,3 m en morte-eau en moyenne en 1991) (Pergent & Kempf, 1993) et décroît sur sa périphérie. Autour de l'archipel des Kerkennah, l'existence d'un vaste plateau peu profond, couvert d'herbiers de Posidonies (et de Cymodocées), modifie la progression de l'onde de marée.

Sur les côtes de l'archipel des Kerkennah le marnage est appréciable et, à l'étale des marées de vives-eaux (l'amplitude est alors de 1,30 m), ses parties les plus basses, les *Sebkhas*, sont partiellement submergées (Paskoff & Sanlaville, 1983). L'amplitude de la marée varie d'une région à l'autre en fonction de la phase du cycle de marée, (Tab. 1).

Tab. 1 : Variation de l'amplitude de la marée en fonction du cycle de la marée (D'après Bejaoui, 1988)

	Vives eaux	Mortes eaux
Basses mers	20-30 cm	50-80 cm
Pleines mers	90-120 cm	70-80 cm

6.2. Courantologie et houles

Les eaux autour de l'archipel des Kerkennah possèdent une influence mixte : orientale et occidentale. L'influence des eaux atlantiques caractérise la zone en période printanière, alors qu'en période automnale, la tendance s'inverse marquée par l'arrivée du flux oriental (Brandhorst, 1977).

Dans cette région, il existe quatre catégories de courants : les courants dus aux vents, les courants de marée, les courants de houle et les courants généraux. Les courants induits par les vents sont très faibles dans la rade de Sfax et ne dépassent pas 0,5 m.s⁻¹ même en hiver (vents secteurs Nord-Ouest à Sud-Ouest) et au printemps (vents secteurs Nord à Nord/Nord-Est).

Les fonds marins très peu profonds et la présence de chenaux de marée engendrent des courants puissants de 1,03 à 1,54 m.s⁻¹ dans les Oueds sous-marins (Pergent & Kempf, 1993) et donc un bon renouvellement des eaux ainsi qu'une marée importante (Fig. 8). Cet environnement favorable permet le fort développement de populations halieutiques et donc une activité de pêche florissante depuis l'Antiquité (Slim *et al.*, 2004). Les courants de marée sont liés à la période du cycle de marée et aux contraintes morphologiques.

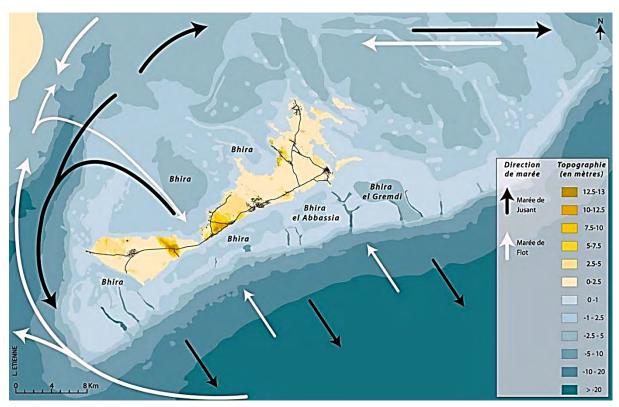


Fig. 8. Topographie sous-marine, courants principaux et marée dans l'archipel des Kerkennah (Source : Etienne, 2014).

Quatre dynamiques différentes dominent les côtes de l'archipel : i) les houles d'Ouest à Nord-Ouest engendrant un courant de dérive, allant du Nord-Ouest vers le Sud-Est. Ces mouvements de masses d'eau, provoquent soit l'érosion de la côte, soit l'accumulation des sédiments. Les zones de décantation sont les baies de Sefnou et de Charmandiya ; ii) les houles du Nord sont à l'origine d'une dérive littorale divisée en deux branches, longeant les

côtes Nord de l'archipel. Ce mouvement est également à l'origine d'une érosion très prononcée au niveau des côtes Nord de Chergui notamment au niveau de Roumadiya; iii) les houles induisent une dérive littorale à faible intensité de propagation, et généralement amortie par les cordons parallèles à la côte, l'érosion est par conséquent faible; iv) les houles du Sud-Ouest engendrant un courant de dérive allant du Sud vers le Nord. Le transport se fait également dans le même sens provoquant ainsi des zones de dépôt de sédiments au niveau de la baie de Charmandiya, et des îlots de Roumadiya et Gremdi (Geoid, 2001).

Etant abritées par les îles Kerkennah et les hauts fonds tout autour, les houles du large s'amortissent au cours de leur propagation vers le littoral de Sfax (APAL-WWF, 2006). Ce phénomène est renforcé par la présence des prairies de Cymodocées et d'herbiers de Posidonies.

CHAPITRE III: STRATEGIE RETENUE POUR L'INVENTAIRE ET L'EVALUATION DES HABITATS ET DES ESPECES

I. Déroulement chronologique de la mission

La campagne de terrain s'est déroulée du 19 au 29 juillet 2015 avec les moyens navigants consistant en deux barques de pêche. L'organisation et la coordination des activités pendant cette mission ont été assurées par les représentants du CAR/ASP.

A l'exception des journées du 23 et du 26 juillet 2015, où les conditions météorologiques n'ont pas été favorables aux travaux de prospection, la mer était calme et les observations se sont déroulées dans de bonnes conditions.

Dimanche 19 juillet:

- ❖ Déplacement Tunis Monastir –Sfax– les Kerkennah
 - •Départ : 8h30 ; Arrivée : 20h30
- ❖ Installation à l'hôtel Cercina.

Lundi 20 juillet:

- ❖ Vérification terrain :
 - •Embarquement à 8h00 à partir du port d'El Attaya
 - •Retour au port à 17h00
 - •Prospection des points
 - •Initiation de l'équipe au travail de prospection
- ❖ 21h00 débriefing ; programmation de la prospection du jour suivant.

Mardi 21 Juillet:

- ❖ Vérification terrain :
 - •Embarquement à 7h40 à partir du port d'El Attaya
 - •Retour au port à 12h30
 - •Prospection des points
- ❖ 20h00 débriefing ; programmation de la prospection du jour suivant.

Mercredi 22 Juillet:

- ❖ Vérification terrain :
 - •Embarquement à 7h00 à partir du port d'El Attaya
 - •Retour au port à 12h50
 - •Prospection des points

❖ 20h00 débriefing ; programmation de la prospection du jour suivant

Jeudi 23 juillet:

- ❖ Pas de travail de terrain du fait de conditions météorologiques défavorables
- Début de restitution des données des journées précédentes.
- Conditionnement des échantillons collectés.

Vendredi 24 Juillet:

- ❖ Vérification terrain :
 - •Constitution de deux groupes de travail
 - •Embarquement à 6h06 à partir du port d'El Attaya
 - •Retour au port à 13h50
 - •Prospection des points
- ❖ 20h00 débriefing ; programmation du travail du jour suivant.

Samedi 25 juillet:

- ❖ Pas de travail de terrain du fait de conditions météorologiques défavorables
- * Restitution des données des journées précédentes.
- Conditionnement des échantillons collectés.

Dimanche 26 juillet:

- ❖ Pas de travail de terrain du fait de conditions météorologiques défavorables
- * Restitution des données des journées précédentes.
- Traitement des échantillons collectés
- ❖ Programmation de la prospection du jour suivant.

Lundi 27 juillet:

- ❖ Vérification terrain :
 - •Deux groupes de travail
 - •Embarquement à 6h55 à partir du port d'El Attaya
 - •Retour au port à 15h25
 - •Prospection des points
- ❖ 20h00 débriefing ; programmation de la prospection du jour suivant.

Mardi 28 juillet:

- ❖ Vérification terrain :
 - •Deux groupes de travail
 - •Embarquement à 6h30 à partir du port d'El Attaya
 - •Retour au port à 13h30
 - •Prospection des points
- ❖ 16h00 débriefing
- ❖ A partir de 18h00, préparation du matériel et conditionnement des échantillons en vue du retour sur Tunis

Mercredi 29 juillet:

- * Retour sur Tunis via Sfax
 - •Départ des Kerkennah à 8h30
 - •Arrivée sur Tunis vers 15h00 ; Restitution du matériel au CAR/ASP

II. Site d'étude

La zone sélectionnée pour l'étude est intégrée dans le périmètre de la future APMC du Nord Est de l'archipel des Kerkennah (Fig. 9). Elle s'étale de 34°48'47,70"N; 11°17'46,30"E à 34°46'7,66"N; 11°22'17,98"E et couvre une superficie de près de 40 km². Elle a été sélectionnée pour la présente étude par l'APAL et le MedMPANet.

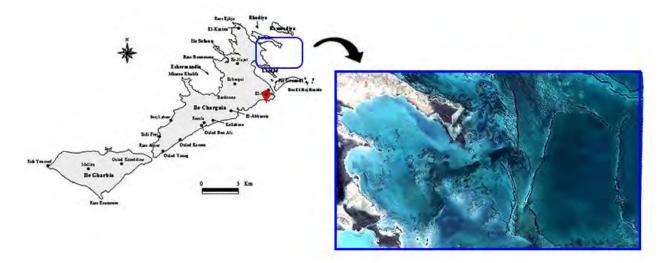


Fig. 9. Localisation de la zone d'étude dans la partie Nord Est de l'archipel des Kerkennah.

III. Méthodes d'étude

Afin de couvrir toute la zone d'étude dans le temps imparti, la méthode de prospection retenue est basée sur la technique des transects. Les transects sont prédéfinis à partir de l'étude d'une image satellite. Ils sont tracés sur l'image de façon à ce qu'ils passent par un

maximum de points spécifiques correspondant à différentes nuances de couleurs, formes et textures. Au total, près de 2 000 stations font l'objet d'une exploration en bateau ou à pied selon la profondeur, à l'aide d'une lunette de Calfat (Fig. 10), et 10 sites sont inventoriés en plongée en scaphandre autonome ou en apnée.

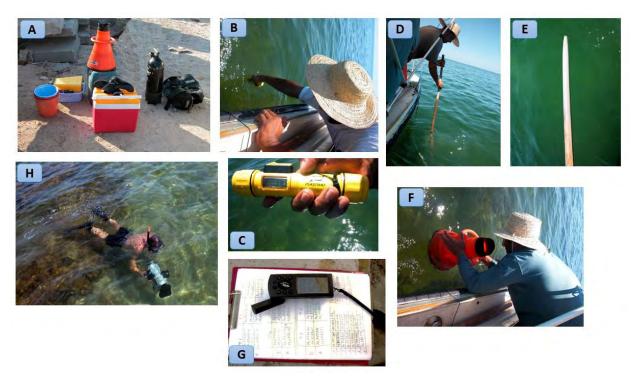


Fig. 10. (a) Divers matériel utilisé (b) et (c) Sondeur à main utilisé pour les mesures bathymétriques (d) (e) Perche de navigation utilisée pour déterminer le type de fond (e) l'extrémité de perche trempée de vase (f) Observations à l'aide de la Lunette de Calfat (g) GPS et ardoise (h) Prise de vue sous-marine.

Ces explorations ont concerné des fonds compris entre 0 et 2 m de profondeur. Les profondeurs des stations sont mesurées moyennant un sondeur à main de type Echotest II Plastimo.

Pour chaque station la localisation est précisément relevée à l'aide de GPS (Global Positionning System : 72H et GPSMAP 176C de la société Garmin) et les principales biocénoses et types de fonds rencontrés sont reportés (Annexe 1). La nature du fond marin est déterminée par sondage à l'aide d'une perche de navigation.

Des photographies des principales biocénoses et espèces observées sont réalisées. Plusieurs algues, et notamment des espèces du genre *Cystoseira*, sont prélevées pour identification ultérieure et une trentaine de faisceaux de *Posidonia oceanica sont* récoltés à une profondeur d'environ 1 m pour effectuer une analyse phénologique et lépidochronologique (Planche 1). Des mesures, *in situ*, de densité de l'herbier de Posidonies sont réalisées par décompte du nombre de faisceaux dans une aire standardisée matérialisé par un carré de 20 cm de côté. Trois séries de 20 comptages sont réalisées, et les résultats sont finalement exprimés en nombre de faisceaux par m² (Planche 1).

La cartographie des principales biocénoses observées a été réalisée par traitement d'une image obtenue à partir du satellite Pléiades (Airbus Defence & Space), orthorectifiée (format DIMAP), prise le 08 mars 2012 avec une résolution de 0,5 m (pixel).

Le traitement de l'image a été effectué à l'aide des logiciels ENVI 5.0 d'Exelis et ArcMAP 10.2 d'ESRI. Vu la grande taille de l'image (>700 Mo) et l'importante surface couverte, il a été procédé au découpage de l'image en 24 parcelles d'égale superficie (Fig. 11).

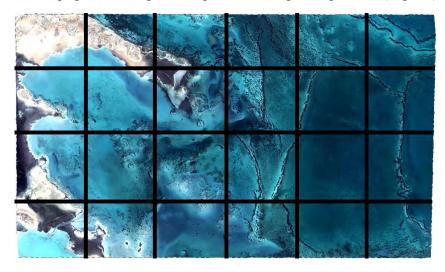


Fig. 11. Image satellite de la zone étudiée découpée en 24 parcelles.

Chacune des parcelles a été traitée et classée selon la méthode de la classification non supervisée en se basant sur les vérités terrains réalisées lors de la mission de terrain. La méthode de la classification non supervisée, bien que moins rapide que la classification supervisée, a été adoptée compte tenu de l'hétérogénéité de l'image satellite et de la complexité de la zone à cartographier.

Outre la caractérisation de l'herbier de Posidonies, une attention particulière a été accordée aux espèces inscrites dans l'annexe II de la liste des espèces en danger ou menacées du protocole ASP/DB (PNUE-PAM-CAR/ASP, 2007).

IV. Matériel et moyens mis en œuvre

1. Moyens de navigation

Deux embarcations à fond plat (Fig. 12), adaptées à la configuration de la zone d'étude, ont été mobilisées (Tab.2).

Fig. 12. Les 2 embarcations utilisées pour la prospection du terrain.

Tab. 2. Caractéristiques des embarcations utilisées lors de la prospection.

Type d'embarcation	Nature de la coque	Longueur (m)	Largeur (m)	Hauteur (m)	Puissance du moteur (cv)	Forme de coque	Type de propulsion
Barque rigide	Fibre de verre	5.20	2.12	0.85	85	fond plat	Hors-bord de
Barque rigide	Fibre de verre	4.5	2	0.85	20	fond plat	type 2 temps

2. Moyens techniques

De nombreux moyens techniques sont mis en œuvre pour mener à bien la mission de terrain (Tab. 3).

Tab. 3. Moyens logistiques mis en œuvre pour la mission de prospection marine de la partie Nord Est de l'archipel des Kerkennah.

Désignation	Quantité
Echosondeur à main de type Echotest II Plastimo	2
Compresseur d'air comprimé	1
Bouteilles de plongée 15 l	4
Autres équipement de plongée	4 jeux
Caméra vidéo sous-marine	1
Ardoise sous-marine	4
Mètre pliable en PVC	1
Quadrat métallique	3
Lunettes de Calfat	2
GPS	3

ETUDE ET CARACTERISATION DE L'ETAT DE L'HERBIER DE POSIDONIES (POSIDONIA OCEANICA)

Planche 1

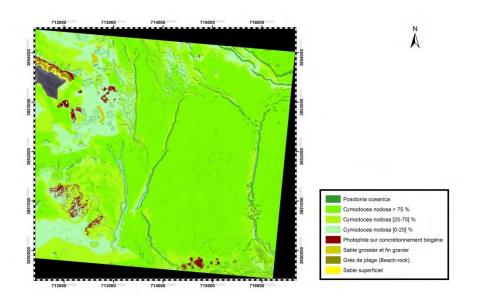
Mesures in situ (Densité, recouvrement, radiales graduées)

Prélèvements & observation in situ (Observations par plongeur et vidéo sous-marine)

CHAPITRE 4: PRESENTATION ET EXPLOITATION DES RESULTATS

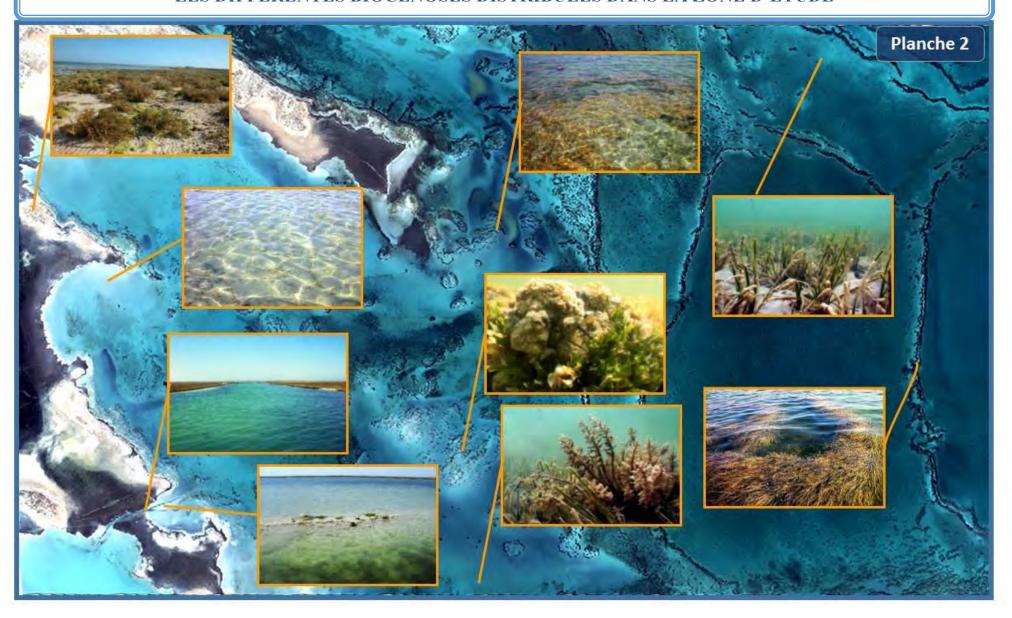
Bionomie benthique – Description des principales biocénoses et types de fonds

Les différentes biocénoses et associations identifiées et les différentes espèces remarquables rencontrées sont décrites dans ce qui suit.


Les biocénoses benthiques sont identifiées et classées par étage bathymétrique (Planche 2 ; Tab. 4) selon la classification des biocénoses benthiques marines de la région méditerranéenne élaborée dans le cadre de la Convention de Barcelone (PNUE, PAM, CAR/ASP, 2007). Si une biocénose est absente de ce document, la classification, du Muséum National d'Histoires Naturelles est prise en compte (Michez *et al.*, 2014). Cette nouvelle classification est basée sur la dernière mise à jour des listes d'habitats existantes et particulièrement les cahiers d'habitats Natura 2000, et la liste des biocénoses de Méditerranée de l'inventaire ZNIEFF en Région Provence Alpes Côte d'Azur.

Tab. 4. Biocénoses benthiques identifiées lors de l'étude, classées par étage bathymétrique selon la typologie des biocénoses benthiques de Méditerranée (PNUE-PAM-CAR/ASP, 2007; Michez et al., 2014).

ETAGE	SUBSTRAT	BIOCENOSE
j	VASES	➤ Biocénose des laisses à dessiccation lente sous les salicornes (LDL)
ORA		➤ Biocénose des sables supralittoraux
	SABLES	Faciès des sables sans végétation, avec débris dispersés
SUPRALITTORAL		Faciès des phanérogames échouées (partie supérieure)
	FONDS DURS ET ROCHES	➤ Biocénose de la roche supralittorale (RS)
MEDIOLITTORAL	VASES, VASES SABLEUSES ET SABLES EN MILIEU EURYHALIN ET	➤ Biocénose des sables vaseux et vases des lagunes et estuaires (SVLE)
OLITT	EURYTHERME	Associations à halophytes
EDIC	SABLES	➤ Biocénose des Sables Médiolittoraux
M	FONDS DURS ET ROCHES	Concrétionnement à Neogoniolithon brassica-florida
	NEWALTA OUVERTE OUVERTE OUVERTE OUVERTE	➤ Biocénose des sables fins de haut niveau (SFHN)
INFRALITTORAL		➤ Biocénose des sables fins bien calibrés (SFBC)
		Association à Halophila stipulacea
		Association à Cymodocea nodosa sur SFBC
		➤ Biocénose des sables vaseux superficiels de mode calme (SVMC)
		Association à Cymodocea nodosa, Zostera noltei, Caulerpa prolifera et Caulerpa ollivieri *
	SABLES GROSSIERS PLUS	➤ Biocénose des sables grossiers et fins graviers brassés par les vagues (SGBV)


OU MOINS ENVASES	Association à rhodolithes sur SGBV (Lithophyllum dentatum, Lithophyllum racemus, Lithophyllum incrustans)
	➤ Biocénose de l'herbier à <i>Posidonia oceanica</i>
HERBIER A POSIDONIA OCEANICA	Biocénose de l'herbier à Association à Posidonia oceanica
OCEANICA	Ecomorphose de l'herbier tigré
	➤ Biocénose des algues infralittorales
	Association à Cystoseira crinita, C. foeniculacea (Syn. C. discors et C. compressa / C. crinitophylla *
	Association à Cystoseira brachycarpa, C. funkii et C. spinosa va tenuior / C. squarrosa *
	Association à Cystoseira sauvageaueana et C. barbata *
FONDS DURS ET	Association à Cystoseira spinosa et C. usneoides*
ROCHES	Association à Corallina elongata et Herposiphonia secunda *
	Association à Padina pavonica, Dictyotales, Stypocaulon scoparium et Laurencia spp. / Anadyomene stellata *
	Association à Codium spp. *
	Association à Cladostephus spongiosus (Syn. C. hirsutus) et Dasycladus vermicularis *
	Association à Acetabularia acetabulum *

^{*} Voir description adaptée à la situation de la zone d'étude dans la suite du texte

Carte 1 : Cartographie des habitats clefs et des types de fonds superficiels

LES DIFFERENTES BIOCENOSES DISTRIBUEES DANS LA ZONE D'ETUDE

I. L'étage Adlittoral : zone terrestre

Cet étage « terrestre » n'a pas fait l'objet d'observations spécifiques ; en effet, il a fait l'objet d'une étude récente et très détaillée dans le cadre du programme portant sur les Petites Iles Méditerranéennes (Médail *et al.*, 2015). Cette étude porte sur la flore et végétation des îles et îlots satellites de l'archipel des Kerkennah ; les principales observations sont reportées cidessous :

« ... On peut distinguer trois communautés différentes liées aux côtes sableuses, surtout bien représentées sur les îles Gremdi, Roumadiya et Gharsa. La première est constituée d'un nombre réduit de thérophytes nitrophiles pionnières (ex. : <u>Cakile maritima</u>), spécialisées dans l'exploitation des sédiments organiques transportés par la mer, qui correspond à l'habitat 1210 (= végétation annuelle des laissés de mer). La deuxième se caractérise par <u>Pancratium maritimum</u>, <u>Polygonum maritimum</u>, etc., espèces typiques de l'habitat 2110 (=dunes mobiles embryonnaires) ; enfin, les "dunes blanches" du cordon littoral correspondent à l'habitat 2120 (= dunes mobiles à Ammophila arenaria).

Sur les côtes un peu rocheuses fortement influencées par les embruns marins, se développent des communautés à thérophytes halo-xérophiles à cycle très bref qui exploitent les petites couches de sol sableux-limoneux et salé pouvant s'accumuler dans les concavités du sol ; ceci correspond à l'habitat 1510 (= steppes salées méditerranéennes : <u>Limonietalia, Frankenietalia pulverulentae</u>), avec comme espèces caractéristiques <u>Limonium avei, Frankenia pulverulenta</u>, etc.

Les sols argileux et marécageux salés permettent le développement d'une végétation arbustive basse dominée par de nombreuses espèces d'Amaranthacées (genres Arthrocnemum, Suaeda, Sarcocornia, Salsola, Halimione, Atriplex, etc.) qui forment des formations végétales plutôt uniformes et paucispécifiques de sansouires référées à l'habitat 1420 (= fourrés halophiles méditerranéens et thermo-atlantiques : Sarcocornietea fruticosae) ; sur la côte septentrionale de Gremdi et à Sefnou, une formation à Limoniumtunetanum et Juncus maritimus s'intègre à ce grand type de végétation. Dans un contexte encore plus nitrophile et xérique, existe un faciès caractérisé par la prévalence de Limoniastrum monopetalum, Anabasis oropediorum, Halocnemum cruciatum, Salsola oppositifolia, Atriplex glauca, Nitraria retusa et Lycium schweinfurthii, typique de l'habitat 1430 (= fourrés halo-nitrophiles : Pegano-Salsoletea). Parmi ces formations ligneuses, on peut observer des zones ouvertes argileuses-sableuses occupées par des phytocénoses paucispécifiques, dominées par des salicornes annuelles (Salicornia sp.) et correspondant à l'habitat 1310 (= végétations pionnières à Salicornia et autres espèces annuelles des zones boueuses et sableuses : Thero-Salicornietea).

Dans les secteurs un peu plus élevés et exposés au vent, se développent des communautés herbacés encore plus xérophiles, dominées par des graminées vivaces comme le Sparte (Lygeum spartum), qui peuvent être rapprochées de l'habitat 6220 (= parcours substeppiques de graminées et annuelles : Lygeo-Stipetea tenacissimae). Sur les plus grandes îles, les formations herbacées à végétaux pérennes sont très discontinues et perturbées par le pâturage, et les graminées vivaces de grosse taille, comme Stipa parviflora jadis beaucoup plus répandue à Gremdi, sont devenues extrêmement rares. Par contre, il existe divers types de prairies annuelles très riches en espèces et le surpâturage a engendré la formation de phytocénoses herbacés dominées par des plantes bulbeuses toxiques comme les asphodèles ou la Scille maritime ou par des hémicryptophytes très glanduleuses et/ou épineuses (notamment des Astéracées et des Boraginacées).

Des siècles de surpâturage et de coupe de bois (cf. infra) ont induit l'absence totale de formations préforestières et forestières. La seule végétation ligneuse appréciable est représentée par divers faciès de matorrals très bas et discontinus, dominés surtout par des chaméphytes suffrutescents (Thymelaea hirsuta, Teucrium luteum subsp. gabesianum,

<u>Helianthemum</u> spp., etc.) caractéristiques de habitat 5330 (= fourrés thermoméditerranéens et présteppiques : <u>Cisto-Micromerietea</u>)».

II. L'étage Supralittoral

Dans l'archipel de Kerkennah, l'étage supralittoral, situé au-dessus du niveau des hautes mers de vives eaux moyennes et seules les marées d'équinoxe ou des vagues issues de tempête peuvent le submerger. En revanche, il est régulièrement humecté par les embruns.

II.1. Vases

Biocénose des laisses à dessication lente sous les salicornes

Cette biocénose permet une dessication plus lente des laisses car elles sont protégées de l'insolation directe par les salicornes. Elle est caractérisée par un grand nombre d'espèces détritivores (amphipodes, isopodes) et de leurs prédateurs (insectes). Dans le site étudié, cette biocénose présente la particularité de pouvoir être atteinte par la marée, tout au moins dans sa partie la plus proche de la mer (Fig. 13). D'autre part, le substrat vaseux est localement couvert de graviers et petits galets vraisemblablement issus de la dégradation des grès de plage (beach-rock; Fig. 13).

Il s'agit d'une zone d'accumulation de laisses de mer essentiellement des phanérogames marines provenant d'herbiers et pelouses proches (*Posidonia oceanica* et *Cymodocea nodosa*) (Fig. 13). Outre les végétaux d'origine marine, cet habitat est alimenté par des rejets d'origine anthropique de toute nature qui viennent s'accumuler. Ces macrodéchets sont essentiellement formés de déchets plastiques provenant des décharges sauvages, les déchets de construction, les abandons des engins de pêches (filets, flotteurs ...).

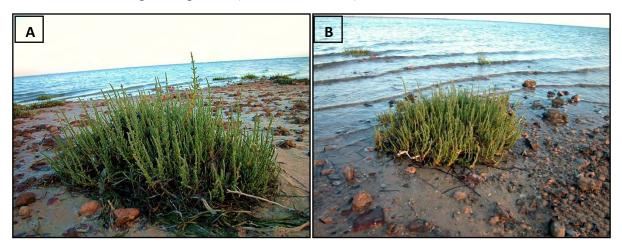


Fig. 13. Biocénose des laisses à dessication lente sous les salicornes (*Arthrocnemum*, *Salicornioideae*) à marée basse (A) et à marée haute (B).

II.2. Sables

Biocénose des sables supralittoraux

Cette biocénose correspond à la haute plage qui est humectée principalement pendant les tempêtes ; outre l'humidité, la température présente également de forte variation. De

nombreux insectes sont présents tout comme les crustacés amphipodes et isopodes. Le faciès le plus représenté est le « Faciès des sables sans végétation avec débris dispersés » (Fig. 14).

Fig. 14. Faciès des sables sans végétation avec débris dispersés avec des graviers issus de la dégradation du beach-rock (gauche) et des feuilles de phanérogames échouées (droite).

II.3. Fonds durs et roches

Biocénose de la roche supralittorale

La biocénose de la roche supralittorale correspond, dans le site étudié, à des côtes rocheuses basses formées de grès calcaire (beach-rock). Ces formations sont couvertes de graviers et de petits galets résultant de l'érosion de ce substrat (Fig. 15). L'érosion est accentuée par l'action des embruns et des enclaves à salinité variable peuvent se former ; les eaux marines sont piégées dans les cavités rocheuses y compris à marée basse (Etienne, 2014). Ce processus donne lieu à des faciès côtiers spécifiques (Oueslati, 1986).

Fig. 15. Placage de grès corrodé avec des signes d'érosion (flèche).

III. Médiolittoral

III.1. Vases, vases sableuses et sables des lagunes et estuaires

Biocénose des sables vaseux et vases

Cette biocénose correspond au prolongement de la biocénose des laisses à dessication lente sous les salicornes, identifiée dans le supralittoral (II.1), et plus particulièrement l'association à halophytes de type 1 qui correspond à des formations composées de plantes annuelles halophiles du genre *Salicornia* colonisant les vases et sables inondés périodiquement.

III.2. Sables

Biocénose des Sables Médiolittoraux

A partir du rivage, on rencontre une bande qui est découverte plus ou moins largement au moment des basses mers et dépourvue de végétation (Fig. 16 et 17). Ces fonds nus abritent des populations d'invertébrés variées : Polychètes (*Hediste diversicolor, Arenicola marina*), amphipodes fouisseurs, mollusques bivalves et surtout des isopodes parmi lesquels *Tylos* sp. *Cyathura carinata*.

Fig. 16. Substrat de l'estran formé de sable envasé avec débris coquillers et quelques graviers.

A basse mer, des tortillons et buttes d'arénicoles (genre *Arenicola*) sont observées dans l'estran.

Fig. 17. Estran sablo-vaseux à marée basse (en période de vives-eaux) couvert essentiellement par des tortillons et buttes d'arénicoles (Vers polychètes) et des macropphytes échouées (*Cystoseira*).

III.3. Fonds durs et roches

Biocénoses de la roche médiolittorale supérieure et inférieure (Planche 3)

Ces biocénoses sont fortement marquées par la variabilité des submersions et l'hydrodynamisme. Elles sont souvent caractérisées par la présence d'algues encroutantes pouvant constituer un véritable substrat biogène.

Dans le secteur Est de l'archipel des Kerkennah on observe régulièrement du sable de plage consolidé connus sous le terme *beach-rock*. Il s'agit de concrétions gréseuses, souvent stratifiées, observées le long des plages à l'instar de ce qui existe en zone tropicale ou subtropicale. L'induration rapide des beach-rocks est due à l'évaporation de l'eau en zone inter- à supra-tidale et à la précipitation de ciment carbonaté. Ce type de formation est également désigné sous le terme de bourrelet, ou crête de cordon littoral (Oueslati, 1986) (Fig.18)

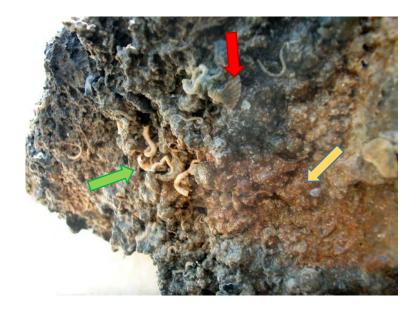

Outre le grès de plage, il est également observé des concrétions organogènes littorales, composés essentiellement de roches sédimentaires carbonatées, dont la structure est due à l'accumulation de fragments de squelettes ou de coquilles calcaires d'organismes marins (bivalves, foraminifères, etc.). Ces concrétionnements biogènes servent de substrats pour de grandes algues brunes photophiles du genre *Padina*, *Laurencia* et *Cystoseira* et des algues vertes essentiellement *Anadyomene stellata*, *Halimeda tuna*, *Acetabularia acetabulum*, *Dasycladus vermicularis* et *Caulerpa prolifera* (Fig 19). A l'instar des concrétionnements à *Neogoniolithon brassica-florida*, observés plus au Sud (*Bahiret* El Bibans), plusieurs organismes bioconstructeurs sont à l'origine de ces formations (Fig. 20).

Fig. 18. Beach-rock observé dans l'étage médiolittoral de l'archipel des Kerkennah.

Fig. 19. Concrétions organogènes littorales des algues photophiles (Gauche : concrétionnement à *Neogoniolithon brassica-florida*)

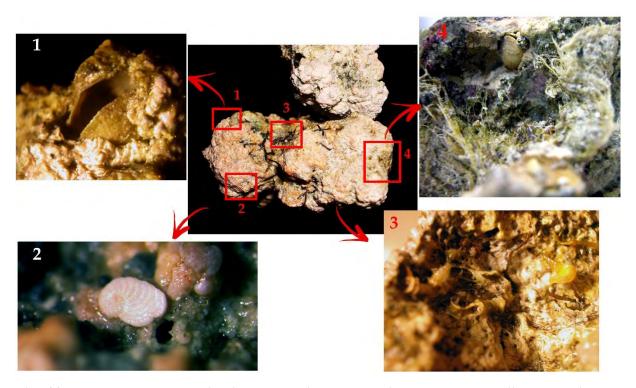


Fig. 20. Photo en Haut :détail d'un concrétionnement biogène montrant l'incorporation de fragments de grès calcaire (flèche jaune) composé de débris coquiller (flèche rouge) et de polychètes-Serpules (flèche verte) (); Photo en bas : concrétionnement biogène formé d'une couche fine d'algue calcaire encroûtante, (1) et (3) des coquilles de bivalves, (2) des foraminifères benthiques (ici *Peneroplis pertusus*) et (3) des espèces de la famille de *Vermetidae*.

IV. INFRALITTORAL

IV.1. Sables fins plus ou moins envasés

Biocénose des sables vaseux superficiels de mode calme

Cette biocénose débute à proximité de la côte, à faible profondeur allant jusqu'à -3 m de profondeur, elle occupe de grandes superficies dans la zone d'étude plus ou moins calmes permettant une sédimentation fine de l'habitat à l'origine du sédiment sablo-vaseux mêlé parfois de fins graviers.

Ces zones peu profondes subissent des conditions de milieu très variables (écarts de température saisonniers et journaliers très grands; fortes conditions de sédimentations) provoquant ainsi le développement important de la phanérogame marine *Cymodocea nodosa* et d'espèces filtreuses et fouisseuses.

Cet habitat est en contact avec l'herbier à *Posidonia oceanica* qui fait généralement suite, en profondeur, à cette biocénose.

Association à Cymodocea nodosa

Cette association, s'étend depuis la côte, jusqu'à -2 m de profondeur, présente une extension particulière au niveau de la zone d'étude et l'archipel des Kerkennah en général.

Cymodocea nodosa supporte des variations de salinité, de luminosité et de température, ainsi elle peut tolérer une large gamme de concentrations en éléments nutritifs. Elle supporte des conditions variées de substrat et ainsi peut s'installer aussi bien sur du sable grossier que sur de la vase.

Dans les hauts fonds superficiels des îlots du Nord-Est, *Cymodocea nodosa* est souvent associée à *Caulerpa prolifera* avec laquelle elle peut constituer des pelouses mixtes, contribuant ensemble aux dépôts sédimentaires (Fig. 21). En allant vers le large, l'abondance de ces 2 espèces change avec une diminution des Cymodocées et une augmentation des Caulerpes. Les espèces accompagnatrices sont essentiellement *Cystoseira foeniculacea* f. *schiffneri Halimeda tuna, Padina pavonica* ainsi que *Dictyota linearis*.

Les peuplements faunistiques associés aux Cymodocées et/ou aux pelouses mixtes sont essentiellement des mollusques gastéropodes dont les plus fréquentes sont des espèces de la famille des Cerithiidae à savoir *Bittium reticulatum* et *Cerithium vulgatum*. La grande nacre *Pinna nobilis* est ponctuellement présente. En outre, peuvent être localement dominantes des bivalves tels que *Tapes decussatus* et *Loripes lacteus*, des vers polychètes et des éponges du genre *Sarcotragus* et *Aplysina*.

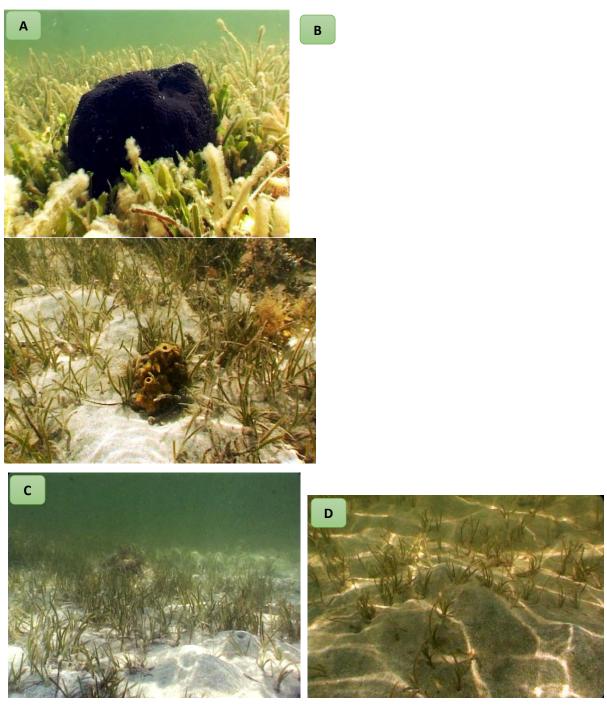


Fig. 21. (A) Prairie à Cymodocea nodosa et Caulerpa prolifera entourant l'éponge Sarcotragus muscarum et (B) Aplysina aerophoba; (C) et (D) prairies à à Cymodocea nodosa sur fond sableux-vaseux.

IV.2 Herbier à Posidonia oceanica

Biocénose de l'herbier à Posidonia oceanica

Posidonia oceanica est une phanérogame marine, endémique de Méditerranée. Elle constitue des formations caractéristiques désignées sous le terme d' « herbiers » entre la surface et 30 à 40 mètres de profondeur. La structure de cette plante permet de distinguer une partie épigée, correspondant aux faisceaux foliaires, et une partie endogée, véritable terrasse sous-marine :

la matte. Ces herbiers, véritables prairies sous-marines, correspondent à l'un des principaux climax méditerranéens.

Dans le site d'étude, l'herbier à *Posidonia oceanica* présente une morphologie particulière désignée sous le terme d'écomorphose de l'herbier tigré.

Ecomorphose de l'herbier tigré

L'herbier tigré de l'archipel des Kerkennah est considéré comme le plus important (superficie, structure) de toute la Méditerranée (Burollet, 1983 ; Pergent *et al.*, 2010). L'herbier tigré est formé de bandes de *Posidonia oceanica* de plusieurs dizaines de mètres de longueur et de près de 2 m de largeur séparées par de la "matte morte" occupée par un peuplement à *Cymodocea nodosa* et/ou *Caulerpa prolifera* (Chlorobionte). La prairie à *Cymodocea nodosa* y est le plus souvent peu dense (moins de 25 % de recouvrement), mais peut localement atteindre un recouvrement de 100 %.

L'herbier tigré se présente sous plusieurs configurations (Fig. 21) :

- « Configuration typique » (Fig. 22A) : conforme à la description reportée par Boudouresque *et al.* (1990).
- « Configuration en cercle » (Fig. 22B) : il s'agit de bandes d'herbier disposées en cercle plus ou moins réguliers. L'intérieur de ces cercles est occupé soit par une prairie à Cymodocea nodosa monospécifique (recouvrement de 25 à 100%) soit par une mosaique Cymodocea nodosa / Caulerpa prolifera. Des bandes de Posidonia oceanica peuvent aussi se trouver à l'intérieur de ces cercles. La taille de ces cercles est très variable allant de quelques dizaines de mètres à plus de 150 mètres de diamètre. Certaines structures circulaires de petite taille (quelques mètres) constituent des « atolls » (Pergent et al., 2007).
- « Configuration en cordon » (Fig 22C) : il s'agit de bandes d'herbier disposées le long d'une ligne plus ou moins droite constituant un cordon qualifié de récifal par Hattour et Ben Mustapha (2013). Ces de plusieurs kilomètres de longueur atteignent par endroits plus d'une trentaine de mètres de large. L'herbier y est généralement affleurant et les feuilles atteignent la surface lors des marées basses (Fig 22D). Ces cordons, « Tsir », délimitent de vastes étendues, « Bhirat » (traduction littérale de lagune), dont le fond généralement vaseux atteint 2 m de profondeurs ; il est occupé par des prairies à Cymodocea nodosa denses, très souvent associées avec Caulerpa prolifera (Fig. 23). Au sein de ces « Bhirat » de nombreuses bandes de Posidonia oceanica isolées sont observées (Fig 22E).

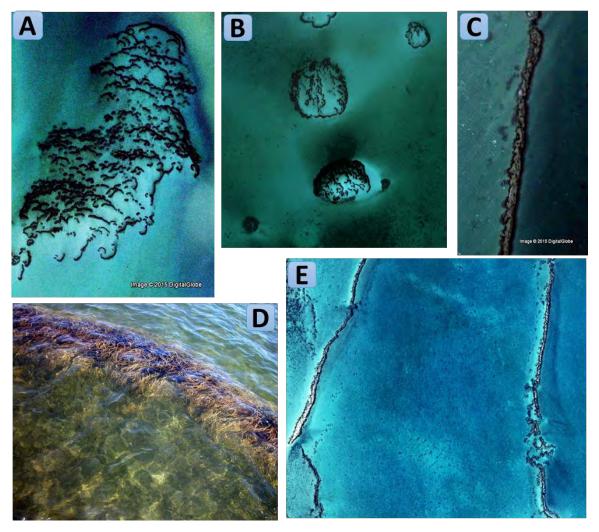


Fig. 22. Herbier tigré (A) Configuration typique, (B) Configuration en cercles, (C) Configuration en cordon, (D) une bande de *Posidonia oceanica* affleurante entrecoupés par une mosaïque de Cymodocea nodosa et (E) Cordons d'herbiers tigrés (« *Tsir* ») délimitant une « *Bhirat* » où des bandes de *Posidonia oceanica* isolées sont éparpillées.

Fig. 23. Chenal inter-bandes de *Posidonia oceanica* tapissé par une pelouse à *Cymodocea nodosa* et *Caulerpa prolifera*.

Caractérisation de l'herbier à Posidonia oceanica

La densité moyenne des herbiers à *Posidonia oceanica* est estimée *in situ* à 717 ± 11 faisceaux.m⁻². L'herbier correspond à un herbier de type I ou herbier dense à très dense selon Giraud (1977) mais, compte tenu de la profondeur faible et variable, la densité de l'herbier est considérée comme « normale » à « médiocre » en fonction des stations selon la grille de Pergent-Martini et Pergent (2010). Cette densité faible s'explique en grande partie par la marée qui augmente la turbidité de l'eau dans les hauts fonds et la structure particulière des herbiers tigrés.

L'étude phénologique des faisceaux de *Posidonia oceanica* (Annexe 2) révèle un nombre de feuilles adultes toujours supérieur au nombre de feuilles intermédiaires. Le nombre moyen des feuilles par faisceau (adultes et intermédiaires) est de 5,2. Ces valeurs sont en accord avec celles reportées antérieurement pour le Sud des îles Kerkennah (APAL, 2012), où ce nombre variait entre 5 et 6 feuilles par faisceau (Tab. 5). Le faible pourcentage des feuilles intermédiaires dans les échantillons étudiés s'explique par la saison du prélèvement ; en effet, ces feuilles sont surtout présentes lors de la période de reprise de la croissance foliaire à la fin de l'hiver et au printemps alors que le nombre de feuilles adultes est maximum au mois d'Août (Pergent & Pergent-Martini, 1988).

La longueur maximale enregistrée pour les feuilles adultes est de 831 mm et la largeur maximale 11 mm. Ces valeurs correspondent à celles enregistrées, à cette saison, dans plusieurs herbiers de Méditerranée.

L'indice foliaire global (feuilles adultes et intermédiaires) varie entre 199,3 et 415,6 cm².faisceau⁻¹. Ces valeurs sont très élevées par rapport à celles habituellement relevées en Méditerranée (Pergent & Pergent-Martini, 1988; PNUE-PAM-CAR/ASP, 2009; Pergent-Martini & Pergent, 2010). Le Leaf Area Index (LAI) par m² est estimé 21 m².m⁻² pour une densité moyenne d'environ 717 faisceaux/m².

La valeur du coefficient A est de l'ordre de 58,4%. Ce pourcentage élevé s'explique principalement par l'importance de l'hydrodynamisme dû aux courants des marées, la faible profondeur, et entre autre à la pression mécanique exercée par le trafic maritime dans cette zone. L'épiphytisme et le broutage sont des facteurs secondaires qui amplifient le risque de perte des apex dans cette zone.

Tab. 5 : Paramètres phénologiques de l'herbier à *Posidonia oceanica* dans la partie Nord Est de l'archipel des îles Kerkennah, en Juillet 2015 (moyenne \pm intervalle de confiance 95%). L.A.I. = Leaf Area Index. Coefficient A = (Nbre de feuilles Ad+In cassées / nombre total de feuilles) x 100).

	Adultes (Ad)	Intermédiaires (Int)	Global (Ad+Int)
Nb moyen feuilles.faisc1	$3,4 \pm 0,4$	1.8 ± 0.4	5.2 ± 0.6
Longueur moyenne (mm)	$718,0 \pm 44.3$	294.0 ± 37.8	510,6 ± 104,6
Largeur moyenne (mm)	$10,5 \pm 0.2$	$10,3 \pm 0.2$	$10,4 \pm 0,2$
Coefficient A (%.faisc. ⁻¹)	$84,1 \pm 0,08$	$6,5 \pm 0,07$	58.4 ± 0.07
Indice Foliaire (cm ² .faisc. ⁻¹)	$255,6 \pm 30.9$	54.9 ± 12.2	308.1 ± 28.9

L.A.I. $(m^2.m^{-2})$	18.3 ± 2.2	3.8 ± 0.9	21.1 ± 2.7

L'analyse lépidochronologique (Annexe 3) confirme une croissance verticale du rhizome très importante (16.4 ± 1.27 mm/an). Ces valeurs sont considérées comme élevées par rapport aux valeurs moyennes mesurées en Méditerranée (7.4 mm.an⁻¹ in Pergent *et al.*, 1995).

La production foliaire annuelle moyenne varie entre 3,8 et 9,8 feuilles pour une moyenne globale de $6,9 \pm 0,01$. Cette production est proche de la moyenne observée en diverses stations méditerranéennes estimées par Pergent *et al.* (1995) à 7,5 écailles par cycle.

En général, les herbiers observés dans la zone étudiée présentent une bonne vitalité, et ne semblent pas souffrir de pression anthropique significative.

Biocénose des algues infralittorales

L'objectif de l'étude n'étant pas d'établir un inventaire exhaustif du macrophytobenthos, nous présentons ici les espèces d'intérêt pour la conservation ciblées par nos prélèvements et quelques espèces accompagnatrices collectées en même temps.

Ainsi, 26 espèces de macrophytes ont été recensées dans l'aire étudiée, réparties en 10 Chlorophyta, 5 Rhodophyta et 11 Ochrophyta (Tab. 6). Le macrophytobenthos est en grande partie implanté sur un concrétionnement organogène (Fig. 24). Il est à noter que les concrétionnements sont présents aussi bien dans l'infralittoral que dans le médiolittoral.

L'ordre des Fucales (Ochrophyta) est le plus représentatif avec 7 espèces (Planche 5) qui sont inscrites sur la liste figurant dans l'annexe II du protocole ASP/DB.

Les seules espèces d'intérêt pour la conservation observées sur la zone d'étude appartiennent au genre *Cystoseira*.

Les Cystoseires sont des espèces à forte valeur patrimoniale de la Méditerranée qui édifient des « forêts» analogues aux forêts du domaine terrestre. Ces forêts caractérisent des habitats remarquables en termes de biodiversité et de productivité. Parmi ces espèces, *Cystoseira foeniculacea* f. *schiffneri* endémique de la Méditerranée, dont l'aire de distribution est limitée en Méditerranée est la plus abondante. Elle forme avec *C. susanensis et C. foeniculacea et C. foeniculacea* f. *tenuiramosa* de petites forêts. *Cystoseira compressa* et *C. spinosa* sont en outre présentes, mais avec une faible abondance. *C. compressa* n'a été trouvée que épiphyte sur *Cystoseira foeniculacea* f. *schiffneri* ou en association avec *Padina pavonica*.

Tab. 6 : Liste des espèces de macrophytobenthos observées (Magnoliophytes exclues). * : espèce inscrite dans l'Annexe II (liste des espèces en danger ou menacées) de la Convention de Barcelone (PNUE-PAM-CAR/ASP, 2007).

Phylum	Classe	Ordre	Genre et espèce
		Duranalandalar	Acetabularia acetabulum
		Dasycladales	Dasycladus vermicularis
		Cladophorales	Anadyomene stellata
/ta	ae		Caulerpa prolifera
pphy	iyce		Halimeda tuna
Chlorophyta	Ulvophyceae	Bryopsidales	Flabellia petiolata
Ch	U_{l}		Codium vermilara
			Penicillus capitatus
		Sinhonooladalos	Valonia aegagropila
		Siphonocladales	Valonia sp.
	Phaeophyceae		Cystoseira barbata *
			Cystoseira compressa
		Fucales	Cystoseira foeniculacea *
_			Cystoseira foeniculacea f. schiffneri *
Ochrophyta			Cystoseira foeniculacea f. tenuiramosa *
rop	iydo		Cystoseira sp.
Эch	hae		Cystoseira spinosa *
	\boldsymbol{b}		Cystoseira susanensis *
		Dietvotales	Dictyota linearis
		Dictyotales	Padina pavonica
		Sphacelariales	Halopteris scoparia
_	ea	Corallinales	Jania rubens
hyts	Florideophycea e	Corailinales	Lithophyllum sp.
Rhodophyta		Nemaliales	Liagora viscida
Rho e		Ceramiales	Laurencia obtusa
		Peyssonneliales	Peyssonnelia squamaria

Dans les forêts de Cystoseira ont été identifiés :

Une flore constituée de *Padina pavonica*, *Dasycladus vermicularis*, *Halimida tuna*, *Laurencia obtusa* et sp., *Cladophora* sp. et *Anadyomene stellata*.

Une faune constituée de Crustacées isopodes (*Sphaeroma serratum*, *Eurydice pulchra*), de juvéniles d'holothuries, d'Echinodermes (*Amphipholis squamata* et *Ophioderma longicauda*, *Asterina gibbosa*), d'ascidies (*Didemnum* sp. et *Ectinascidia turbinata*) et du poisson fuseau *Syngnathus abaster*.

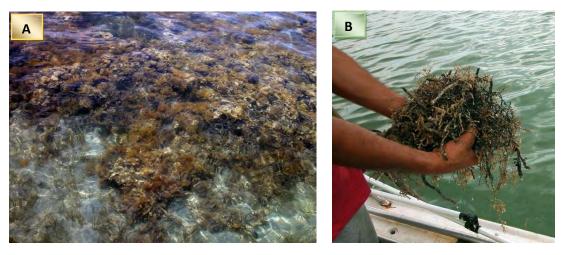


Fig. 24. (A) Placage rocheux couvert d'algues photophiles essentiellement *Padina pavonica*, *Laurencia* et des *Cystoseira* (B) Amas de Cystoseires en forme libre.

Faune benthique

L'essentiel de la faune benthique des hauts fonds de la zone prospectée est représenté par la faune malacologique et les spongiaires. La grande nacre *Pinna nobilis* et le bivalve *Pinctada radiata* sont fortement présents (Fig. 25). Plusieurs espèces de mollusques sont également rencontrées : *Hexaplex trunculus*, *Chlamys glabra*, *Loripes lacteus* et *Cerithium vulgatum* et des espèces de la famille des *Vermetidae*. Des échinodermes essentiellement *Holothuria tubulosa*, *Paracentrotus lividus* et *Ophioderma longicauda* ont été identifiés. Des ascidies (*Ectinascidia turbinata*, *Didemnum* sp.) des spongiaires (*Aplysina*, *Cliona*, *Dysidea*, *Geodia*, *Ircinia* et *Sarcotragus*) et des vers polychètes figurent aussi dans nos prélèvements.

Il est à noter que le bryozoaire *Zoobotryon verticillatum*, considéré comme une espèce invasive dans certaines régions du monde, a été retrouvé en abondance dans la zone d'étude ; de taille importante, arborescent et de couleur brune il peut être confondu avec des Cystoseires.

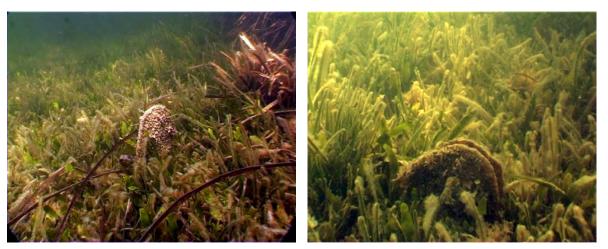


Fig. 25. Pinna nobilis dans les prairies à Cymodocea nodosa et Caulerpa prolifera.

Planche 4

ILLUSTRATION DES PRINCIPALES BIOCENOSES DE LA PARTIE NORD-EST DES KERKENNAH

Etage Supralittoral

Biocénose des laisses à dessiccation lente sous les salicornes

Biocénose des sables supralittoraux

Faciès des sables sans végétation, avec débris dispersés

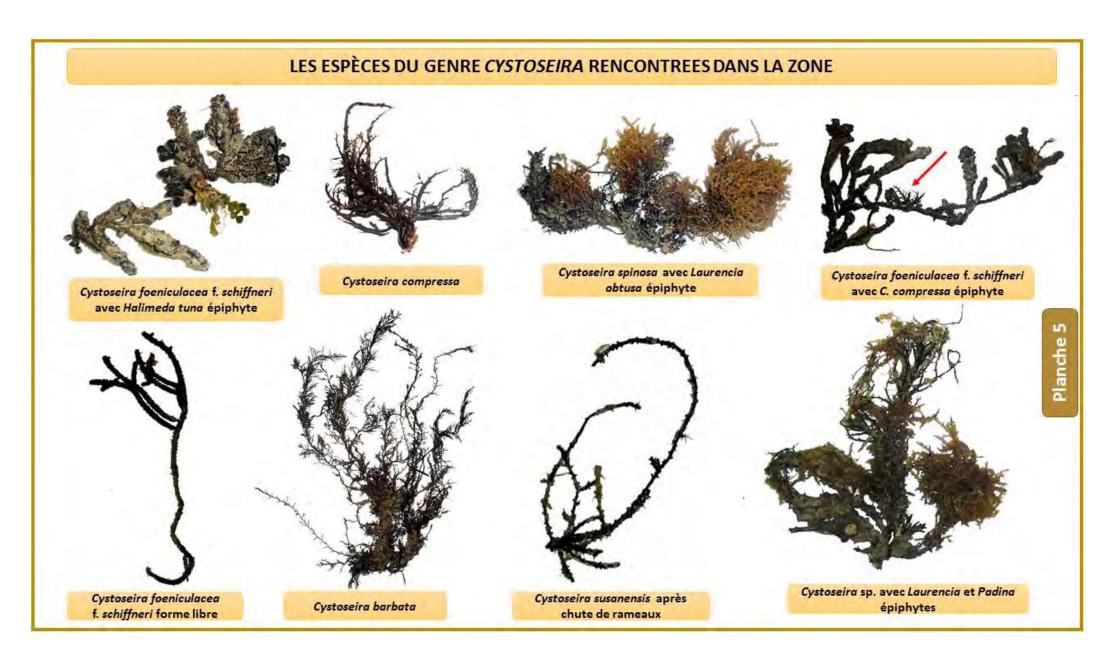
Etage Médiolittoral

Biocénoses des fonds meubles du médiolittoral

Biocénose des sables vaseux et vases

Biocénose de la roche médiolittorale

Etage Infralittoral


Association à Cymodocea nodosa sur SFBC

Biocénose de l'herbier à Posidonia oceanica

Biocénose des algues infralittorales

CHAPITRE V : SYNTHESE DES POTENTIALITES NATURELLES ET CULTURELLES ET LES VULNERABILITES DE LA ZONE D'ETUDE

I. Evaluation des potentialités naturelles et culturelles de la zone Nord Est de l'archipel des Kerkennah

1- Biodiversité marine

Une biodiversité élevée et un paysage marin remarquable

Les données collectées durant la campagne d'investigation confirment la présence d'un potentiel naturel important associé à une diversité biologique marine très élevée. De plus, les observations réalisées attestent d'un bon état de conservation du milieu marin en général.

Flore remarquable

Le paysage sous-marin dans la zone Nord Est de l'archipel des Kerkennah est caractérisé par la présence d'un immense herbier à *Posidonia oceanica*, présentant une vitalitéélevée, qui tapisse les hauts fonds et affleure à en surface lors des marées basses. Ce patrimoine naturel, considéré comme l'un des plus remarquables de toute la Méditerranée, tire son importance du fait qu'il : i) occupe une surface très importante à l'échelle de la zone d'étude, ii) présente un structure très rare « herbier tigré » à cause des courants de marées et constitue donc un monument naturel unique, iii) assure un rôle primordial au niveau écologique et dans le maintien des équilibres littoraux : importante production primaire et diversité biologique élevée, protection du littora contre l'érosion, exportation de matières organiques vers d'autres écosystèmes, zone de frayères et nurseries pour de nombreuses espèces d'intérêt commercial, paysages sous-marins à haute valeur esthétique.

L'importance écologique des hauts-fonds entourant l'archipel s'explique non seulement par la présence de la phanérogame marine *Posidonia oceanica* mais aussi d'une autre phanérogame *Cymodocea nodosa* qui contribue à façonner la configuration de la végétation marine de la zone en occupant une surface de plus de 1 000 km². Une mosaïque d'espèces végétales caractérisée par les herbiers mixtes de phanérogames marines (*Cymodocea nodosa* et *Posidonia oceanica*) et la Chlorobionte *Caulerpa prolifera* dominent le paysage sous-marin dans cette zone.

Les prairies à *Cymodocea nodosa* et les herbiers à *Posidonia oceanica* jouent un rôle hydrodynamique primordial et contribuent à la fixation des sédiments. Que ce soit par leurs rhizomes et racines (*Posidonia oceanica* et *Cymodocea nodosa*) ou par leurs stolons (*Caulerpa prolifera*), ils fixent les fonds meubles et freinent l'hydrodynamisme jouant ainsi le rôle de stabilisateur des sédiments.

Ces prairies et herbiers présentent également une importante fonction écologique plus directe, grâce à leur production primaire élevée et à toutes les formes de supports et d'abris qu'ils offrent. Les herbiers, et principalement ceux à *Posidonia oceanica*, les plus grands, servent également de support et d'abri pour de nombreux autres organismes qui en font leur biotope exclusif ou préférentiel. Ils permettent la différenciation de nombreuses niches écologiques (organismes fixés, sédentaires ou vagiles sur les feuilles et les rhizomes, à la surface ou à l'intérieur du sédiment, dans la colonne d'eau entre les végétaux ou à proximité), occupées par

de nombreuses espèces qui viennent y passer au moins une phase de leur vie (reproduction ou stade juvénile).

D'autres part, les espèces du genre *Cystoseira*, inscrites, à l'exception d'une, sur l'annexe II du Protocole ASP/DB, édifient des habitats marins de grande importance, pris en compte dans la sélection des sites à inclure dans les Inventaires Nationaux de Sites Naturels d'Intérêt pour la Conservation. Parmi ces espèces, six sont présentes dans la zone d'étude, *Cystoseira foeniculacea* f. *schiffneri* est la mieux représentée.

Faune remarquable

Au niveau benthique, deux espèces de mollusques bivalves sont particulièrement bien représentées, la grande nacre *Pinna nobilis*, qui constitue un bon bio-indicateur de la qualité du milieu littoral méditerranéen) et *Pinctada radiata* qui est inféodée à l'herbier à *Posidonia oceanica* et sur les palmes des pêcheries fixes.

L'archipel de Kerkennah est également connu pour son importance dans la production tunisienne d'éponges commerciales (Ben Mustapha, 1991). Plusieurs espèces sont identifiées au niveau des hauts fonds : *Spongia officinalis, Petrosia ficiformis* et *Hippospongia communis*.

La présence de la tortue marine caouanne (*Caretta caretta*) est régulièrement signalée (APAL, 2001).

Une avifaune diversifiée

L'archipel des Kerkennah est classé comme une zone importante pour les oiseaux « Important Bird and Biodiversity Areas (IBA) et Zone Importante pour la Conservation des Oiseaux » (ZICO). En effet, les nombreuses *Sebkhas* (un tier de la superficie totale de l'archipel) constituent une zone d'hivernage recherchée (présence permanente d'eau) pour de nombreux oiseaux d'eau qui viennent nicher, par exemple le grand cormoran *Phalacrocorax carbo*, les goélands et les sternes, y compris *Larus genei*, *Larus fuscus*, *Larus cachinnans*, *Sterna caspia* et *Sterna sandvicensis*. D'autres espèces se reproduisent sur l'archipel, notamment le faucon crécerelle *Falco tinnunculus*, le Courvite isabelle *Cursorius cursor*, le Guêpier d'Europe *Merops apiaster* et la pie-grièche grise *Lanius excubitor*.

En outre, cet archipel constitue une escale importante au printemps et en automne pour des centaines de milliers de passereaux migrateurs (BirdLife International, 2015). En période de migration, beaucoup d'oiseaux venant d'Europe s'y rendent : limicoles et oiseaux d'eau comme les spatules blanches *Platalea leucorodia* (Charmadiya et Gremdi), hérons cendrés *Ardea cinerea* (Charmadiya et Gremdi), goélands leucophée *Larus cachinnans* (Charmadia), limicoles et des Sternidae. L'archipel des Kerkennah abrite 1% de la population de Spatules blanches - *Platalea leucorodia* (176 individus recensement de janvier 2009), et 1% de la population du Goéland railleur - *Larus genei* (1981 individus recensement de janvier 2009).

Une étude récente confirme l'importance de l'archipel des Kerkennah pour l'avifaune (Qninba & Ouni, 2014). En effet, selon cette étude, plusieurs espèces remarquables d'oiseaux d'eau sont identifiées dans la partie Nord-Est de l'archipel : l'Œdicnème criard (*Burhinus oedicnemus*) qui est très abondant, les Sternes qui sont des espèces relativement rares et très localisées au Maghreb, le Gravelot à collier interrompu (*Haradrius alexandrinus*), le Chevalier gambette (*Tringa totanus*) qui ne se reproduit en Afrique qu'au niveau de la

Tunisie, le grand cormorant (*Phalacrocorax carbo*) (1000 à 10000 présent pendant l'hiver), et le Pipit rousseline (*Anthus campestris*).

2- Valeurs sociales et culturelles

Des valeurs sociales et culturelles indéniables

La pêche côtière représente la plus ancienne activité de l'archipel des Kerkennah et constitue la principale activité des habitants de la région depuis des siècles. Les conditions typiques de Kerkennah ont favorisé l'installation d'un type de pêcheries fixes propre à Kerkennah appelé *Charfia*. Ces pêcheries remontent vraisemblablement à l'époque phénicienne. Cette technique de pêche originale et traditionnelle est utilisée et transmise de père en fils. La *Charfia* est constituée essentiellement de branches de palmier plantées dans le fond de façon à former des parcours au terme desquels les poissons se trouvent piégés. La *Charfia* peut être décrite comme un "mur" rectiligne d'environ 500 m de longueur conçu en feuilles de palmiers qui aboutit à deux haies de palmes (80 à 100 m) en forme de V dont la pointe est dirigée vers le large. A la pointe du V se trouve un couloir d'entrée qui débouche dans une chambre de capture donnant accès à plusieurs nasses (ou *Drinas*) en Alfa (*Stipa tenacissima*) et de branches de palmier dans lesquelles viennent se piéger à marées basses les poissons. Les *Charfia* forment ainsi des barrières qui dessinent sur les côtes de l'archipel des lignes zigzagant sur le reflet turquoise de la mer.

Dans l'archipel, il existe une autre activité locale, malheureusement en régression, il s'agit de la valorisation des dattes issues des palmiers de la région.

Les contraintes climatiques et les sols pauvres ont amené les agriculteurs kerkenniens à s'adapter et à utiliser des techniques culturales spécifiques concernant les pratiques agricoles traditionnelles dont les plus importantes sont la palmeraie et les jardins. Parmi ces techniques ont cite les cultures en sec, le labour régulier et fréquent, le grattage des sols, la taille des pieds de vigne et des oliviers de telle sorte qu'ils retiennent l'humidité, l'amendement des sols etc... (Kebaïli Tarchouna, 2013, Etienne, 2014).

Une protection naturelle

L'archipel des Kerkennah compte 161,6 km de côtes mais du fait de l'existence des *Sebkhas*, seulement la moitié du rivage est apte au développement touristique. En outre, la qualité des plages qui sont souvent recouvertes à marée haute, vaseuses à marée basse, avec une très la faible hauteur de l'eau, n'attirent pas les touristes (UNESCO, 1981). Les hauts fonds qui entourent les îles rendent l'accès difficile et seuls les bateaux à fond plat peuvent les empreinter. Toutes ces contraintes et l'absence d'aménagement facilitant l'accès aux îlots de la partie Nord Est de l'archipel lui confère une protection naturelle contre de nombreux risques de sur-fréquentation et d'exploitation.

- II. Vulnérabilité & principaux risques et menaces exercés sur le biotope
- 1- Menaces d'origine anthropique
- 1.2. Les menaces concernant l'ensemble de l'archipel des Kerkennah Chalutage et surexploitation des ressources vivantes

Ces menacent sont en grande partie liées au remplacement de la pêche traditionnelle par la pêche moderne. La pêche illégale menace les moyens d'existence des Kerkenniens. Vivre de la pêche est devenu encore plus difficile ces dernières années, depuis que des chalutiers inquiètent les communautés de pêcheurs en braconnant dans la zone proche des îles, réservée aux pêcheurs artisanaux munis de petites embarcations. De plus, la pêche des jeunes poissons de petite taille menace le stock halieutique à court terme.

Un accroissement de la pêche illicite au chalut, au détriment de la pêche traditionnelle aux "Charfias" ainsi qu'une modernisation des installations a été mise en évidence. En effet, cette modernisation, qui a également touché la pêcherie fixe, consiste au remplacement des matériaux traditionnels par des matériaux plus modernes et plus résistants aux intempéries et à l'usure de temps. A titre d'exemple, les claies de nervures de palmes refondues, ont été remplacées par des filets de maillage de 12 à 18 mm et les pieux de soutien en bois d'olivier ont été remplacés par des tubes en PVC ainsi que les nasses, confectionnées à partir de tigelles de régime de dattes, ont été échangées contre des nasses en grillage, le recours au grillage de fer apporté de l'extérieur et servant à protéger les nasses des dauphins devient de plus en plus fréquent. De telles modifications, imposées par une plus grande disponibilité des nouveaux matériaux et de leur impact positif évident sur la rentabilité, risque de modifier le côté traditionnel et esthétique des pêcheries fixes qui font le charme des paysages marins de l'archipel des Kerkennah. En effet, l'utilisation de filets et des produits à base de plastique est devenue courante ce qui conduit à l'abandon d'une partie de plus en plus importante de la palmeraie, dont les branches des arbres ne sont plus coupées ni entretenues, ce qui accélère sa dégradation.

Le chalutage par un engin de pêche, connu localement sous le nom du « *Kiss* », menace les ressources halieutiques mais surtout les herbiers à *Posidonia oceanica* dans le secteur Nord-Est de l'archipel des Kerkennah. Selon Ben Hmida (2014) le chalutage benthique par les filets du Kiss exerce une forte pression sur les herbiers et affecte particulièrement le recouvrement de l'herbier. Cet engin destructeur est strictement interdit par la législation actuelle alors que le nombre de ses utilisateurs ne cesse d'augmenter.

En plus de la destruction des herbiers à *Posidonia oceanica* et à *Cymodocea nodosa*, la pêche à la tartaronne (ou *Kiss*) entraîne la capture d'une quantité importante des petits poissons immatures non commercialisables et rejetés de nouveau en mer, notamment les petits sparaillons (*Diplodus annularis*) dont le poids individuel ne dépasse les dix grammes. Les pêcheurs de la région de Mellita (Nord-Ouest) ont pu préserver leur *Charfias* contrairement aux pêcheries des zones Nord et Est de l'Archipel qui ont connu une régression.

Utilisation du sable de la mer pour les constructions

Il existe cinq carrières pour l'extraction illicite des sables qui sont actuellement abandonnées (Fehri, 2011). La carrière d'extraction d'El-Kbour, au nord d'El-Abbassia, ainsi que celle d'Enf Errkik ont été ouvertes dans la croûte calcaire villafranchienne et ont respectivement servi à la construction des jetées des ports de pêche d'El Attaya et de Kraten. Selon la même source, plusieurs points d'extraction illicite des sables holocènes et historiques pour les besoins de la construction existent actuellement dans l'archipel et provoquent le déchaussement de plusieurs dizaines de palmiers et peut même atteindre la nappe phréatique salée. Ces conséquences sont irréversibles d'autant que ces carrières sont, pour la plupart du temps, transformées en dépotoirs sauvages d'ordures ménagères. Pire, dans certains cas, leur

ouverture s'est faite aux dépens de sites archéologiques qui ont été purement et simplement ravagés.

1.3. Les menaces spécifiques à la partie Nord-Est de l'archipel

La partie Nord Est de l'archipel, bien qu'encore peu exploitée et fréquentée, se trouve particulièrement menacée. Parmi les menaces les plus importantes, on note la destruction de la couverture végétale, et certaines actions de braconnage.

Braconnage et pêche illégale

Le ramassage des œufs de perdrix gambra (*Alectoris barbara*) et l'abattage de tortues marine (*Caretta caretta*) pour la viande, les œufs, la peau, la carapace et la graisse sont les raisons majeures du déclin drastique de ces populations dans cette région (Fig. 26).

Une étude réalisée par Qninba & Ouni (2014), sur les oiseaux nicheurs sur les îles et îlots Nord Est de l'archipel des Kerkennah, a montré que le braconnage et le pillage des nids (de toutes les espèces mais principalement ceux du Goéland leucophée et de la Perdrix gambra) constituent une menace potentielle répandue au niveau des îles et îlots nord-est de l'archipel des Kerkennah.

Fig. 26. Braconnage des tortues marines Caretta caretta dans l'archipel des Kerkennah.

Destruction de la couverture végétale

Les coupes de végétation représentent une autre menace ; cette activité a été constatée surtout au niveau de Sefnou et Gremdi (Qninba & Ouni, 2014).

La végétale naturelle souffre actuellement d'un surpâturage par les troupeaux ovins qui exerçent une pression significative sur les touffes de sparte *Lygeum spartum* alors que cette espèce constitue le support de nidification le plus utilisé par le Goéland leucophée (Qninba & Ouni, 2014). Ce surpâturage touche parfois également les vergers (vigne, figuiers, oliviers) notamment au niveau des îlots de Gremdi, de Roumadiya et de Sefnou (APAL, 2001).

Les arrachages abusifs, les coupes de palmes irréguliers sont deux pratiques défavorables existantes à l'origine de la disparition des individus de palmiers et d'une érosion génétique concomitante.

La palmeraie souffre également du manque de labours (on sème de moins en moins d'orge) et d'entretien : plus d'émondage, plus de fécondation des palmiers femelles.

De même la pratique très répandue d'étêter les palmiers pour en recueillir la sève ou le « *Legmi*», est devenue elle aussi meurtrière pour ces arbres. En effet par le passé, la récolte du « *Legmi* » était respectueuse du palmier et une incision modérée lui permettait de repousser par la suite ; mais aujourd'hui, les *Legamgis* exploitent les palmiers jusqu'à la dernière goutte de sève entraînant irrémédiablement leur mort (APAL, 2011).

Déclin de stock des éponges

L'archipel des Kerkennah est un lieu de pêche aux éponges très réputé, quoique cette activité ait fortement diminué ces dernières années. En effet, le stock des spongiaires a connu une chute importante ces dernières années. Selon les statistiques de pêche de la DGPA (Direction Générale de la Pêche et de l'Aquaculture) de l'année 2010, l'évolution du stock a connu une baisse continue depuis 2006, il est passé de 101 tonnes (en 2006) à 10 tonnes seulement en 2009 et 2010, soit une baisse près de 90%.

Selon un pêcheur local de l'Attaya, la pêche aux éponges est une activité très ancienne qui se pratiquait à pied sur des fonds de 1 à 1,5 m; elle était très répandue à l'époque mais cette activité a fortement diminué ces dernières années; elle est menacée d'extinction vue la surexploitation du stock des éponges commercialisées dans la zone.

2- Menaces d'origine naturelle

Insularité

L'insularité et la petite taille des îles de l'archipel des Kerkennah constituent un facteur important de vulnérabilité. Les îles et en particulier les petites îles et les îlots tels que Kerkennah sont plus vulnérables aux changements environnementaux (changement climatique, élévation du niveau de la mer) que les masses continentales (Etienne, 2014). Le changement climatique est considéré comme puissant facteur supplémentaire de vulnérabilité des territoires insulaires (David, 2010).

Élévation du niveau de la mer

Selon Etienne (2014), l'archipel mesure, dans l'Antiquité, l'équivalent de 37 km de long sur 18,5 de large et aujourd'hui, il ne mesure plus que 30 km sur 14 km de large ce qui traduit l'avancée importante de la mer sur la terre. Slim *et al.* (2004) supposent que certains îlots, aujourd'hui isolés, étaient rattachés aux îles principales et en particulier l'îlot Gremdi car des vestiges de voies antiques ont été découvertes entre l'île de Chergui et les îlots.

L'archipel de Kerkennah est connu pour sa vulnérabilité physique liée à sa faible altitude et la fragilité des couches litho-stratigraphiques. Le niveau de la mer s'élève plus rapidement autour de l'archipel de Kerkennah qu'ailleurs en Tunisie, par le jeu combiné de la subsidence et du réchauffement climatique.

Les arguments en faveur de cette subsidence se retrouvent à travers les vestiges historiques datant de l'époque romaine que l'on trouve recouvert d'une lame d'eau dépassant 2 m. Parmi les autres arguments, on citera la submersion d'une carrière exploitée à l'époque antique et d'une chaussée qui, à la même époque, reliait El Ataya à l'îlot de Gremdi (APAL, 2001).

La combinaison d'un climat plus chaud, de l'élévation du niveau de la mer, de la fragilité physique des îles de l'archipel ainsi que la présence d'enjeux économiques de nature à dégrader l'environnement renforcent la vulnérabilité de l'archipel de Kerkennah.

Erosion côtière et recul du trait de côte

Les côtes de l'archipel de Kerkennah sont majoritairement en recul. Selon Etienne (2014), la valeur maximale d'érosion est de 32,2 m en 47 ans soit 0,68 m/an en moyenne et la moyenne du recul significatif est de -11,8 m entre 1963 et 2010 ou -0,25 m/an en moyenne. Les côtes les plus touchées par cette érosion sont celles qui sont sensibles à la fois à l'érosion (côtes composées de matériaux fragiles) et aux submersions (côtes basses). Les structures géologiques sont très majoritairement fragiles et facilement érodables, ce qui accentue le risque d'érosion marine ; d'autre part, la faible altitude du littoral entraine une extension des *Sebkhas* qui représentent déjà une grande partie de la superficie de l'archipel (environ 45% de la surface de l'archipel, Etienne, 2014). La vulnérabilité des côtes de l'archipel, déjà importante, s'est accentuée depuis les années 1960 (Etienne, 2014).

L'extension des zones urbanisées littorales a amené à la concentration plus importante d'enjeux en zone vulnérable. Ainsi, de plus en plus d'habitations et d'activités très importantes pour l'archipel se trouvent très proches de la mer.

Associés à ces constructions côtières, les aménagements littoraux sont nombreux sur certaines zones et perturbent les dynamiques littorales et sédimentaires. La perturbation de ces dynamiques entraine actuellement une augmentation de la vulnérabilité à l'érosion en arrière des digues ou sur les espaces proches des aménagements. Elle entraîne également une vulnérabilité à long terme au niveau des espaces aménagés. En effet les aménagements de protection ne peuvent pas stopper l'érosion mais seulement la ralentir.

Le recul du trait de côte est causé par le phénomène d'érosion dû à l'action mécanique et chimique des vagues mais également dû à l'élévation du niveau de la mer, à l'affaissement du sol de l'archipel par subsidence. Ce recul de la côte est très fortement corrélé à la lithologie.

Extension hétérogène des surfaces de Sebkhas

Le recul de la côte n'est pas le seul danger auquel doit faire face l'archipel et ses habitants. L'extension des *Sebkhas* et la salinisation des sols représentent également un danger menacant.

Les évolutions climatiques et sociétales ont entraîné des modifications importantes dans l'occupation du sol de l'archipel des Kerkennah depuis les années 1950-1960; ces mécanismes aboutissent à la salinisation des sols, à la mort des palmiers et à l'extension des surfaces de *Sebkhas* (Etienne, 2014). L'occupation du sol a été grandement modifiée, entraînant une extension urbaine parfois importante, un recul marqué de la palmeraie traditionnelle, un déplacement et une croissance importante des surfaces irriguées et l'extension des surfaces de *Sebkhas* (Etienne, 2014). Ainsi la pression sur les ressources est de plus en plus importante, ce qui indique une plus grande vulnérabilité. Selon Etienne (2014), certaines pratiques culturales anciennes telle que la palmeraie traditionnelle, qui freinaient la salinisation et maintenaient l'agriculture sur les bordures de *Sebkhas* ont été abandonnées. Il

semble donc que l'archipel soit actuellement plus vulnérable face à la salinisation des sols et à l'extension des surfaces de *Sebkhas* qu'il ne l'était avant les années 1960.

Les facteurs de la vulnérabilité résultant de la mobilité du trait de côte sont liés à : i) la nature des côtes (la lithologie qui renseigne sur la capacité de la côte à subir une érosion et la hauteur de la côte qui renseigne sur la vulnérabilité aux submersions) ; ii) les évolutions du climat iii) les enjeux qui accentuent la vulnérabilité et les impacts des aménagements qui peuvent ralentir les taux d'érosion ou les accentuer. Selon une étude réalisée par télédétection (Etienne, 2014), qui prend en compte l'ensemble des *Sebkhas* de l'archipel, y compris sa partie Nord-Est, la surfaces de *Sebkhas* passe de 4 164 ha en 1984 à 4 900 ha en 2011, soit une augmentation de 736 ha (15%) en 27 ans (Fig. 27 ; Etienne, 2014),).

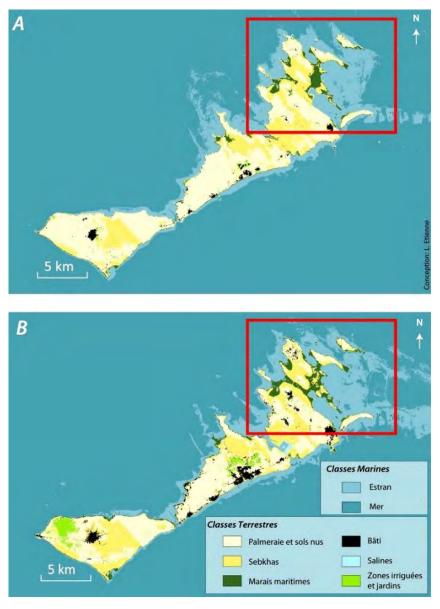


Fig. 27. Evolution de l'occupation du sol et des surfaces des *Sebkhas* de l'archipel entre 1984 (A) et 2011 (B) (D'après Etienne, 2014, modifié).

Les problèmes sociaux : un facteur qui amplifie les menaces

La méconnaissance du capital biologique et la surexploitation des ressources naturelles sont fortement liées aux problèmes sociaux.

En effet, l'accentuation de la pauvreté, la perte du savoir-faire traditionnel et des activités artisanales locales et les pressions exercées sur les ressources naturelles ont poussé les jeunes à l'exode et à l'abondons des terres, d'une part, et à l'augmentation des pratiques illégales (braconnage et autres prélèvements illicites), d'autre part. En outre, les infrastructures et activités humaines constituent des enjeux menacés ce qui constitue également des facteurs aggravant la vulnérabilité. Pour protéger les terres de l'avancée de la mer qui érode lentement la côte jusqu'aux pieds des constructions, des actions ont été menées par les particuliers (construction de murs, remblais, talus, etc...) et par l'Etat (enrochements). Toutefois, ces constructions ne sont pas adaptées puisqu'elles ne semblent freiner l'érosion marine qu'à court terme et provoquent des déséquilibres littoraux pouvant amplifier les processus érosifs (Etienne, 2014).

L'exode rural observé au niveau de l'archipel des Kerkennah constitue un indice d'épuisement de ses potentialités naturelles. Le facteur majeur de dégradation, c'est l'expansion démographique croissante associée au défaut de ressources économiques dans la région.

La conciliation entre le développement socio-économique et la préservation du milieu naturel est une équation restant difficile à résoudre en raison de l'expansion démographique d'une part, et de la fragilité des écosystèmes et la non efficacité de la gestion d'autre part.

SYNTHESE DES MENACES ET VULNERABILITES

- •Remplacement de la pêche traditionnelle par la pêche moderne
- •Engins de pêche non sélectifs
- •Braconnage et pêche illégale
- •Chalutage, plus que 40% des pêcheurs utilisent le Kiss
- •Pêche simultanée des reproducteurs et des juvéniles et la période de repos du 25 juillet au 15 octobre n'est plus respectée
- •Surexploitation et diminution du stock halieutique
- •Utilisation du sable de la mer pour les constructions.

Agriculture

Pêche

- •Les arraches abusifs, les coupes de palmes irréguliers sont deux pratiques défavorables existants causant la disparition des individus de palmiers et une érosion génétique
- Manque de productivité de l'agriculture en sec
- Menaces de salinisation des nappes phréatiques et des sols de l'archipel.

Tourisme & Ecotourisme

- Difficulté d'accès à l'archipel cause principale du recul enregistré dans ce secteur
- •Kerkennah ne figure pas dans les cartes en tant que destination ou dans les circuits touristiques
- •Il n'existe pas de syndicat d'initiative dans ce secteur oeuvrant en faveur du tourisme.

Aspects socioéconomiques

•Stagnation démographique

- Faible proportion des jeunes 23,5% et forte proportion des «plus de 60 ans» ce qui favorise l'**exode rural** au défaut de ressources économiques
- Secteur de la pêche est dominant et emploie près de 40% des actifs
- Difficulté de transport entre Kerkennah et le continent
- •Coût élevé des matériaux de construction par rapport à Sfax
- Seulement 5% des ménages raccordées au réseau assainissement
- •Eaux de forage très riches en fer.

Menaces naturelles et changements climatiques

- •Élévation du niveau de la mer
- Erosion côtière et recul du trait de côte et accroissement des risques de l'avancée de la mer
- •Extension hétérogène des surfaces de sebkhas
- Mortalité de la végétation en zone littorale considérée comme liée à une salinisation excessive des sols.

CONCLUSION

La zone étudiée, située au Nord Est de l'archipel des Kerkennah abrite des ressources marines et côtières riches et diversifiées. Les résultats obtenus confirment que la zone est dotée d'un paysage original composé par des espèces faunistiques et floristiques ainsi que des formations remarquables à l'échelle nationale et régionale. L'extension unique de l'herbier tigré à *Posidonia oceanica* confirme la haute valeur de la zone. Cet herbier apparaît en bon état de conservation, ce qui atteste de la bonne qualité des eaux littorales de la zone d'étude

La flore marine remarquable se caractérise non seulement par l'abondance d'herbiers de phanérogame marines de *Posidonia oceanica* mais également de la prédominance de la phanérogame d'intérêt patrimonial *Cymodocea nodosa* qui, mélangée à la Chlorobionte *Caulerpa prolifera*, forment des prairies jouant un rôle primordial à la fois écologique (une production primaire importante, une frayère et nurserie pour de nombreuses espèces de poissons et de crustacés d'intérêt économique) et hydrodynamique (fixation des sédiments, réduction de l'hydrodynamisme). La richesse biologique est indéniable grâce à la présence d'espèces rares et/ou menacées à l'échelle de la Méditerranée à savoir *Pinna nobilis*, les forêts à *Cystoseira* (*Cystoseira barbata*, *C. compressa*, *C. foeniculacea*, *C. foeniculacea* f. schiffneri, C. foeniculacea f. tenuiramosa, C. spinosa et C. susanensis).

L'inventaire floro-faunistique a mis en exergue des communautés benthiques remarquables sur l'ensemble de la zone d'étude. Ces communautés ont une grande valeur patrimoniale en Méditerranée et sont inscrites de l'annexe II du Protocole ASP/DB de la Convention de Barcelone.

L'isolement naturel de cette partie Nord Est des Kerkennah l'a naturellement protégé des nombreuses dégradations d'origine anthropique communément observées sur le restant des côtes, souvent plus accessibles de l'archipel. Le milieu marin est ainsi fortement préservé de toute sur-fréquentation, de pollution côtière et de ce fait aucune dégradation significative du milieu sous-marin n'a été observée.

Une aire marine protégée regroupe l'ensemble des milieux jugés comme présentant un intérêt patrimonial, aussi, la zone étudiée possède tous les atouts justifiant la mise en place d'une Aire Protégée Marine et Côtière (APMC) englobant une partie ou l'intégralité de ce secteur. L'établissement d'une APMC contribuerait à conserver tous les écosystèmes marins à haute valeur patrimoniale présents. Ceci permettrait également de poursuivre et de développer des activités humaines écologiquement viables à travers l'encouragement de l'usage des pêcheries fixes et la conservation du côté traditionnel et esthétique de cette pratique qui semble régresser tout autour de l'archipel des Kerkennah.

REFERENCES BIBLIOGRAPHIQUES

APAL, 2001. Etude de gestion de la zone sensible littorale des îlots nord-est de Kerkennah. Phase 1. Caractérisation du milieu naturel. Rapport définitif. République tunisienne, Ministère de l'Environnement et de l'aménagement du territoire, Agence de Protection et d'Aménagement du Littoral (APAL), Tunis : 40 p.

APAL, 2012. Etude de faisabilité pour la mise en place de récifs artificiels dans le sud des îles Kerkennah. Rapport de phase I. SERAH / ABARLOA 2. 145 pp. + Annexes.

APAL-WWF, 2006. Projet SMAP III : Etude d'impact de la ville de Sfax sur la biodiversité marine et côtière et promotion d'une pêche durable. Rapport définitif, Tunisie : 112p.

Ben Hmida A. 2014. Impact du mini-chalut benthique « Kiss » sur les herbiers à *Posidonia oceanica* dans la région des îles Kerkennah. Institut National Agronomique de Tunisie. 66 p.

Ben Mustapha K. 2007. Démosponges littorales des iles de Kerkennah (Tunisie). *Bull. Inst. nat. sci. techn. Océanogr. Pêche Salammbô*, 34 : 37-60.

Bernardie, N. et Taglioni, F. 2005. Les dynamiques contemporaines des petits espaces insulaires : De l'île-relais aux réseaux insulaires. *KARTHALA Editions*, 450 p.

BirdLife International (2015) Important Bird Areas factsheet: Kerkennah islands. Downloaded from http://www.birdlife.org on 12/09/2015.

Boudouresque C.F., Ballesteros E., Ben Maiz N., Boisset F., Bouladier E., Cinelli F., Cirik S., Cormaci M., Jeudy De Grissac A., Laborel J., Lanfranco E., Lundberg B., Mayhoub H., Meinesz A., Panayotidis P., Semroud R., Sinnassamy J.M., Span A., Vuignier G., 1990. Livre rouge "Gérard Vuignier" des végétaux, peuplements et paysages marins menacés de Méditerranée. Programme des Nations Unies pour l'Environnement publ.: 1-250.

BRANDHORST W., 1977.- Les conditions de milieu au large de la côte tunisienne. *Bull. lnst. nat. sci. techn. Océanogr. Pêche Salammbô*, Tunis, 1977, 4(2-4): 129-220.

Burollet P.F., Clairefond P. et Winnock E., 1979. La mer Pélagienne : étude sédimentologique et écologique du plateau tunisien et du golfe de Gabès. Ann. Univ. Provence, 6 (1 ; 1-345).

Dahech, S. 2007. Le vent à Sfax (Tunisie), impacts sur le climat et la pollution atmosphérique. Thèse de l'Université de Paris 7, 351 p.

Etienne Lucile.2014. Accentuation récente de la vulnérabilité liée à la mobilité du trait de côte et à la salinisation des sols dans l'archipel de Kerkennah (Tunisie). Geography. Université Paris Diderot (Paris 7) Sorbonne Paris Cité; Université de Sfax (Faculté des Lettres et Sciences Humaines), Thèse de Doctorat. 326 pp.

Fehri Noômène, 2011. « La palmeraie des Îles Kerkennah (Tunisie), un paysage d'oasis maritime en dégradation : déterminisme naturel ou responsabilité anthropique ? », *Physio-Géo* [En ligne], Volume 5 | 2011, mis en ligne le 13 septembre 2011, Consulté le 20 août 2015. URL : http://physio-geo.revues.org/2011; DOI: 10.4000/physio-geo.2011.

Le Floc'H, E. & L. Boulos (2008). *Flore de Tunisie. Catalogue synonymique commenté.* Montpellier. 461pp. p.258.

Médail F., Pasta S. & Chaieb M., 2015. Flore et végétation des îles et îlots satellites de l'archipel des Kerkennah (Tunisie orientale). Bilan de la biodiversité végétale terrestre, impacts environnementaux et recommandations de gestion. Note naturaliste PIM, Aix-en-Provence : 66 p.

- Oueslati, A. 1986. Jerba et Kerkna: îles de la côte orientale de la Tunisie. Leur évolution géomorphologique au cours du quaternaire. Faculté des lettres et sciences humaines de Tunis, Université de Tunis, 210 p.
- Paskoff, R. et Sanlaville, P. 1983. Les côtes de la Tunisie. Variations du niveau marin depuis le Tyrrhénien,. Lyon : Maison de l'Orient et de la Méditerranée Collection de la Maison de l'Orient méditerranéen *Série géographique et préhistorique*, 192 p.
- Pergent G., Calvo S., Cancemi G., Djellouli A., Dupuy de la Grandrive R., Langar H., Pergent-Martini C., Tomasello A., 2010. Nouvelles connaissances sur les herbiers tigrés de Méditerranée. Proceedings of the 4th Mediterranean symposium on marine vegetation (Hammamet, 2-4 December 2010). S. El Asmi, H. Langar& W. Belgacem edits., RAC/SPA publ., Tunis: 95-98.
- Pergent G., Djellouli A., Hamza A.A., Ettayeb K.S., Alkekli A., Talha M., Alkunti E., 2007a. Structure of *Posidonia oceanica* meadows in the vicinity of ain al-ghazala lagoon (Libya): the « macroatoll » ecomorphosis. Proceedings of the third Mediterranean symposium on marine vegetation (Marseilles, 27-29 March 2007). C. Pergent-Martini, S. El Asmi, C. Le Ravallec edits., RAC/SPA publ., Tunis: 135-140.
- Pergent G., Langar H., Pergent-Martini C., 2007. Surveillance de l'herbier des îles Kerkennah (Tunisie). Programme « MedPosidonia » / CAR/ASP Fondation d'entreprise TOTAL pour la Biodiversité et la Mer ; Mémorandum d'Accord Nautilus CAR/ASP N°21/2007 : 14p.
- Pergent G., Pergent-Martini C., 1988. Phénologie de *Posidonia oceanica* dans le bassin méditerranéen. *Annales Institut océanographique, Paris*, N.S., 64(2): 79-100.
- Pergent G., Pergent-Martini C., Boudouresque C.F., 1995. Utilisation de l'herbier à *Posidoniaoceanica* comme indicateur biologique de la qualité du milieu littoral en Méditerranée : état des connaissances. Mésogée 54, 3-29.
- Pergent, G. & Kempf, M. 1993. L'environnement marine côtier en Tunisie. . IFREMER, Brest, France I. Rapport de synthèse, 55pp. 2. Etude documentaire, 395 pp. 3 Annexes, 173 pp.
- Pergent-Martini C., PergentG., 2010. Propositions de lignes directrices pour la standardisation des méthodes de cartographie et de surveillance des magnoliophytes Marines en Méditerranée. PNUE--PAM---CAR/ASP, Contrat N°72/2009, Tunis :1 70.
- Qninba A. & Ouni R. 2014. Les oiseaux nicheurs sur les îles et îlots nord-est de l'archipel de Kerkennah, Tunisie. Initiative PIM. CdL (France)-APAL (Tunisie). 24 pp.
- Ramos-Espla A., Ouergui A., Bayle J.T., Ben Mbarek N., Fernandeztorquemada Y., Guallouz S., Khidri R., Sanchez-Lizaso J.L., Yamak S. (2000) Contribution à la caractérisation des herbiers à *Posidonia oceanica* (L) Delile aux iles kerkennah (Est de la Tunisie, méditerranée orientale. Actes du premier symposium méditerranéen sur la végétation marine (Ajaccio, 3-4 Octobre 2000), pp. 177.
- Slim, H., Trousset, P., Paskoff, R. et Oueslati, A. 2004. Le littoral de la Tunisie, Etude Géoarchéologique et Historique. *CNRS Edition*, 308 p.
- Trousset P., 2005. « Kerkena/Kerkennah », in 27 | *Kairouan Kifan Bel-Ghomari*, Aix-en-Provence, Edisud (« Volumes », no 27) , 2005 [En ligne], mis en ligne le 01 juin 2011, consulté le 26 juillet 2015. URL : http://encyclopedieberbere.revues.org/1338.
- Verger, F. 1995. Slikkes et Schorres: milieux et aménagement. Norois. 165 (1), pp: 235-245.

ANNEXES

ANNEXE 1 - POSITION DES POINTS D'OBSERVATION ET CLASSIFICATION *

* Classe 1 = Cymodocea nodosa; couverture < 25 % / Classe 2 = Cymodocea nodosa; couverture comprise entre 25 et 75 % / Classe 3 = Cymodocea nodosa; couverture > 75 % / Classe 4 = Posidonia oceanica / Classe 5 = Peuplements photophiles sur concrétionnement biogène / Classe 6 = Sable grossier et fin gravier

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
1	4	11,358211	34,764605	36	2	11,358841	34,766279
2	4	11,358109	34,764717	37	5	11,34806	34,766279
3	2	11,358587	34,764749	38	4	11,357706	34,76629
4	3	11,361794	34,764932	39	4	11,3579	34,766343
5	3	11,357251	34,76498	40	4	11,356963	34,766357
6	3	11,35702	34,76505	41	3	11,346432	34,76637
7	3	11,360995	34,765082	42	4	11,348377	34,766391
8	4	11,356409	34,76528	43	3	11,355357	34,766396
9	3	11,351294	34,765309	44	2	11,358222	34,766418
10	4	11,352001	34,765321	45	4	11,357509	34,766426
11	4	11,361719	34,765377	46	4	11,351757	34,766435
12	4	11,350882	34,765411	47	5	11,348234	34,766522
13	2	11,360131	34,765432	48	2	11,360904	34,76653
14	3	11,350217	34,765446	49	5	11,348156	34,766543
15	2	11,351582	34,765446	50	5	11,348189	34,766595
16	3	11,350494	34,765535	51	5	11,3483	34,766612
17	3	11,351193	34,765541	52	5	11,348366	34,766652
18	4	11,361302	34,765641	53	4	11,355101	34,766658
19	4	11,349938	34,765651	54	2	11,347664	34,766684
20	2	11,356146	34,765688	55	4	11,347817	34,766693
21	4	11,353637	34,765722	56	5	11,348367	34,766716
22	4	11,349304	34,765767	57	4	11,354644	34,766762
23	4	11,351572	34,765812	58	5	11,348311	34,766769
24	2	11,3513	34,765818	59	3	11,348393	34,766802
25	4	11,35798	34,765897	60	2	11,3579	34,766804
26	4	11,355267	34,765917	61	5	11,346132	34,766806
27	4	11,348856	34,765946	62	1	11,347718	34,766809
28	4	11,354509	34,76598	63	4	11,347803	34,766819
29	2	11,351431	34,76605	64	4	11,34746	34,766833
30	4	11,359213	34,766108	65	4	11,35144	34,766843
31	4	11,356006	34,766142	66	3	11,348099	34,766849
32	4	11,348271	34,766169	67	4	11,348378	34,766904
33	4	11,348036	34,766175	68	4	11,35761	34,766927
34	2	11,350863	34,766178	69	2	11,347685	34,766952
35	4	11,351793	34,766264	70	5	11,349747	34,766968

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
71	5	11,346533	34,767002	111	4	11,347032	34,768311
72	4	11,357599	34,767067	112	4	11,34738	34,768371
73	4	11,354122	34,767126	113	2	11,357539	34,76843
74	5	11,344197	34,767153	114	3	11,345363	34,768456
75	5	11,350647	34,767185	115	5	11,359686	34,768465
76	4	11,346922	34,767211	116	4	11,345577	34,768523
77	2	11,348678	34,767245	117	4	11,355551	34,768564
78	4	11,357362	34,767258	118	4	11,345432	34,768588
79	5	11,349061	34,767272	119	4	11,345449	34,768632
80	5	11,347019	34,767292	120	2	11,344552	34,768652
81	5	11,354021	34,767335	121	2	11,355108	34,768808
82	2	11,348528	34,767362	122	4	11,345485	34,768818
83	4	11,347966	34,76738	123	3	11,355552	34,768821
84	2	11,356181	34,767452	124	4	11,344737	34,768823
85	3	11,347714	34,767566	125	3	11,356239	34,768895
86	2	11,356927	34,767607	126	2	11,357308	34,768928
87	4	11,353292	34,767706	127	3	11,344457	34,769111
88	4	11,357211	34,767711	128	2	11,3548	34,769165
89	4	11,34766	34,767728	129	4	11,354566	34,769272
90	4	11,351204	34,767737	130	2	11,33008	34,769284
91	3	11,355752	34,767772	131	2	11,328202	34,769325
92	2	11,347957	34,767816	132	1	11,329347	34,769329
93	4	11,357026	34,767829	133	2	11,331101	34,769337
94	4	11,347675	34,767829	134	2	11,327125	34,769337
95	4	11,360362	34,767843	135	1	11,331834	34,769386
96	3	11,355466	34,767879	136	6	11,361512	34,7694
97	2	11,350916	34,767884	137	3	11,338234	34,769402
98	4	11,344895	34,76792	138	3	11,338764	34,769424
99	3	11,355345	34,768014	139	4	11,355904	34,769427
100	2	11,347464	34,768041	140	4	11,337574	34,769433
101	4	11,347199	34,768046	141	4	11,337171	34,769481
102	5	11,350261	34,768052	142	2	11,336369	34,769524
103	3	11,352214	34,76807	143	3	11,334213	34,769538
104	5	11,346172	34,768099	144	3	11,336932	34,769549
105	4	11,351059	34,768122	145	3	11,33559	34,76955
106	4	11,356232	34,768127	146	3	11,332972	34,76955
107	2	11,341063	34,768131	147	4	11,350018	34,76957
108	4	11,353163	34,768134	148	3	11,351248	34,76961
109	4	11,347764	34,768204	149	4	11,334881	34,769629
110	4	11,345036	34,768247	150	6	11,361198	34,769657

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
151	1	11,325021	34,769765	193	4	11,322675	34,771644
152	6	11,361155	34,769785	194	3	11,359418	34,77183
153	6	11,361077	34,769878	195	3	11,351473	34,771847
154	3	11,338275	34,769906	196	1	11,322334	34,771857
155	1	11,325434	34,769958	197	1	11,35842	34,771927
156	2	11,355612	34,770019	198	3	11,335197	34,771949
157	3	11,353662	34,770066	199	4	11,330664	34,77195
158	3	11,354731	34,77007	200	3	11,343829	34,772024
159	3	11,337515	34,770119	201	2	11,329311	34,772039
160	3	11,35503	34,770205	202	3	11,329769	34,772044
161	2	11,336755	34,770238	203	4	11,328831	34,772071
162	3	11,34266	34,770259	204	4	11,329121	34,772088
163	1	11,324716	34,770339	205	2	11,329161	34,772123
164	3	11,343073	34,770489	206	3	11,327637	34,772134
165	1	11,336372	34,770492	207	2	11,336136	34,772158
166	3	11,349429	34,770591	208	1	11,328389	34,772179
167	2	11,35904	34,770727	209	4	11,333921	34,772194
168	3	11,350014	34,770763	210	2	11,336636	34,772223
169	2	11,336229	34,770771	211	2	11,326891	34,77223
170	6	11,360249	34,770785	212	2	11,326094	34,772231
171	3	11,352857	34,770849	213	1	11,325296	34,772242
172	3	11,359109	34,770866	214	1	11,335992	34,772245
173	4	11,353986	34,770872	215	2	11,336971	34,772262
174	4	11,324024	34,77094	216	4	11,335879	34,772296
175	6	11,359953	34,770957	217	1	11,321728	34,772303
176	6	11,359807	34,770987	218	4	11,358129	34,772377
177	2	11,3587	34,771081	219	1	11,327202	34,772404
178	3	11,356247	34,7711	220	2	11,334911	34,77245
179	3	11,337871	34,771102	221	4	11,337557	34,772512
180	4	11,336028	34,771102	222	3	11,333051	34,772519
181	6	11,359439	34,771121	223	4	11,358715	34,772603
182	3	11,338674	34,771127	224	5	11,321437	34,77264
183	4	11,337328	34,771182	225	3	11,334202	34,772671
184	2	11,323262	34,771251	226	3	11,360405	34,772726
185	3	11,362787	34,771262	227	2	11,324852	34,772747
186	6	11,359264	34,771313	228	3	11,338249	34,772789
187	3	11,361715	34,771348	229	3	11,331789	34,77286
188	2	11,33677	34,771351	230	4	11,357814	34,772962
189	2	11,32302	34,771385	231	3	11,356586	34,772968
190	1	11,33611	34,771401	232	2	11,323711	34,772985
191	3	11,348619	34,771417	233	2	11,324023	34,772992
192	1	11,358773	34,771539	234	2	11,324264	34,773028

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
235	2	11,32286	34,773032	278	1	11,317521	34,774513
236	1	11,320671	34,773086	279	2	11,326454	34,774555
237	3	11,333607	34,773097	280	2	11,329781	34,774572
238	4	11,324179	34,773111	281	1	11,321023	34,774582
239	5	11,32187	34,773169	282	4	11,329422	34,774606
240	5	11,322379	34,77319	283	2	11,33188	34,774613
241	4	11,330819	34,773196	284	2	11,327355	34,774615
242	2	11,324171	34,773224	285	1	11,32906	34,774776
243	4	11,338622	34,773271	286	3	11,331613	34,774835
244	2	11,321557	34,77331	287	3	11,339854	34,774845
245	3	11,330157	34,77342	288	1	11,325162	34,774864
246	3	11,333158	34,773441	289	1	11,32382	34,774907
247	4	11,326841	34,773456	290	4	11,326246	34,774915
248	2	11,324124	34,773477	291	1	11,318033	34,775049
249	5	11,32145	34,773591	292	3	11,327752	34,775049
250	1	11,311782	34,77366	293	4	11,337214	34,775093
251	4	11,338412	34,773661	294	3	11,338733	34,775104
252	1	11,326824	34,773665	295	3	11,337751	34,775118
253	3	11,348233	34,773724	296	1	11,325033	34,775128
254	1	11,319952	34,773767	297	4	11,336762	34,775133
255	2	11,329546	34,773779	298	3	11,33219	34,775139
256	4	11,35908	34,773799	299	3	11,332954	34,775157
257	3	11,33779	34,773815	300	3	11,334452	34,775159
258	2	11,32126	34,773816	301	3	11,331174	34,775159
259	4	11,337033	34,773901	302	3	11,330408	34,775164
260	1	11,327046	34,773911	303	1	11,335448	34,775178
261	2	11,324044	34,773925	304	4	11,33519	34,775181
262	4	11,329644	34,773953	305	2	11,335505	34,775214
263	3	11,336597	34,774058	306	3	11,336263	34,775221
264	3	11,332364	34,774086	307	2	11,335909	34,775235
265	1	11,335859	34,774108	308	1	11,326135	34,775246
266	2	11,32707	34,774149	309	1	11,32083	34,775248
267	4	11,326711	34,774167	310	3	11,331265	34,775263
268	2	11,358206	34,774175	311	3	11,330329	34,775281
269	2	11,335923	34,774214	312	2	11,329791	34,775289
270	2	11,357975	34,774244	313	2	11,329796	34,775289
271	4	11,335583	34,774249	314	4	11,329016	34,775317
272	4	11,326353	34,774268	315	1	11,329267	34,775322
273	2	11,325561	34,774275	316	1	11,329396	34,775399
274	4	11,327146	34,77432	317	2	11,327999	34,775441
275	4	11,325391	34,774449	318	1	11,324988	34,775444
276	4	11,318991	34,774461	319	1	11,326086	34,775468
277	5	11,323923	34,774482	320	3	11,356006	34,775468

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
321	5	11,323837	34,775511	366	4	11,32889	34,77643
322	5	11,324867	34,775622	367	4	11,325224	34,776438
323	4	11,329132	34,77565	368	3	11,343384	34,776444
324	3	11,330974	34,775667	369	2	11,330009	34,776461
325	2	11,334303	34,775671	370	2	11,317222	34,776471
326	4	11,325885	34,775693	371	3	11,356001	34,776519
327	1	11,325558	34,775704	372	5	11,321386	34,776527
328	2	11,31793	34,775725	373	2	11,328916	34,77654
329	3	11,328219	34,775725	374	2	11,320878	34,776555
330	4	11,325722	34,775727	375	5	11,324253	34,77657
331	2	11,328759	34,77573	376	2	11,323217	34,776591
332	3	11,322166	34,775732	377	1	11,359349	34,776595
333	3	11,354665	34,775736	378	5	11,31989	34,776605
334	2	11,320707	34,775748	379	1	11,319078	34,776615
335	5	11,32333	34,775769	380	5	11,320246	34,776634
336	3	11,331285	34,77577	381	3	11,32252	34,77665
337	2	11,321692	34,7758	382	2	11,317023	34,776675
338	1	11,318391	34,775805	383	5	11,318957	34,776678
339	1	11,321366	34,775833	384	1	11,330054	34,776699
340	1	11,325255	34,77584	385	1	11,319104	34,776707
341	4	11,325299	34,775848	386	5	11,321331	34,776774
342	5	11,325032	34,775853	387	4	11,329122	34,7768
343	2	11,324979	34,775904	388	5	11,317991	34,776808
344	4	11,317558	34,775917	389	1	11,320627	34,776817
345	3	11,327918	34,775947	390	2	11,358549	34,776825
346	1	11,318333	34,775995	391	4	11,33384	34,776836
347	4	11,328576	34,776102	392	5	11,319658	34,77687
348	1	11,326222	34,776165	393	1	11,319967	34,776874
349	2	11,326752	34,776179	394	2	11,357284	34,776902
350	3	11,330591	34,776184	395	4	11,329288	34,777038
351	2	11,332056	34,776192	396	5	11,319373	34,777066
352	2	11,317267	34,776214	397	1	11,329614	34,777145
353	1	11,32577	34,776236	398	5	11,319507	34,777179
354	2	11,32861	34,776256	399	3	11,347836	34,7772
355	5	11,320717	34,776278	400	2	11,316342	34,777232
356	3	11,333549	34,776305	401	4	11,329535	34,777255
357	2	11,331863	34,776318	402	5	11,318024	34,77732
358	3	11,330219	34,776331	403	5	11,318873	34,777327
359	2	11,331252	34,776347	404	1	11,329614	34,777345
360	4	11,334049	34,776352	405	1	11,319956	34,777346
361	5	11,324888	34,776356	406	1	11,329833	34,777533
362	5	11,319099	34,776358	407	5	11,320893	34,77763
363	2	11,333864	34,776387	408	5	11,31802	34,777672
364	1	11,332149	34,776393	409	4	11,311071	34,777714
365	3	11,330795	34,776419	410	2	11,321572	34,777737

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
411	4	11,329321	34,777765	455	3	11,328818	34,779287
412	2	11,321953	34,777828	456	5	11,320247	34,779292
413	2	11,322452	34,777908	457	1	11,314984	34,779308
414	5	11,323353	34,777927	458	3	11,331802	34,779308
415	1	11,330627	34,777978	459	1	11,319323	34,779318
416	2	11,325185	34,777991	460	5	11,317911	34,77933
417	2	11,329287	34,778001	461	5	11,322221	34,779469
418	5	11,318683	34,778051	462	3	11,339119	34,779485
419	2	11,314759	34,778123	463	2	11,328641	34,779537
420	1	11,311031	34,778128	464	2	11,321894	34,779577
421	1	11,330751	34,77816	465	4	11,323324	34,779614
422	3	11,362014	34,778166	466	2	11,31794	34,779639
423	4	11,331491	34,778186	467	1	11,322881	34,779657
424	4	11,324636	34,778225	468	4	11,322793	34,779679
425	1	11,319554	34,778279	469	1	11,316553	34,779681
426	2	11,318043	34,778349	470	3	11,311814	34,779684
427	4	11,324501	34,778396	471	4	11,324388	34,779732
428	5	11,322575	34,778429	472	3	11,361027	34,779738
429	4	11,330988	34,778457	473	2	11,32489	34,779742
430	5	11,3212	34,778502	474	1	11,314356	34,779742
431	3	11,311498	34,778504	475	2	11,322516	34,779759
432	2	11,324319	34,778509	476	4	11,323914	34,77977
433	2	11,318186	34,77851	477	4	11,323018	34,779772
434	4	11,331279	34,778596	478	5	11,322162	34,77984
435	3	11,331105	34,778659	479	5	11,319295	34,77986
436	4	11,328966	34,778672	480	5	11,319017	34,779895
437	3	11,362374	34,778686	481	2	11,313174	34,779907
438	1	11,324259	34,778699	482	3	11,332414	34,779925
439	2	11,357925	34,77885	483	5	11,321765	34,779974
440	2	11,313504	34,778858	484	3	11,351779	34,779974
441	5	11,318785	34,778873	485	5	11,317837	34,779991
442	4	11,323984	34,778894	486	5	11,315043	34,779996
443	4	11,324394	34,778911	487	5	11,321663	34,780022
444	3	11,325653	34,778925	488	5	11,318337	34,780051
445	4	11,331541	34,779011	489	3	11,311069	34,780059
446	4	11,312041	34,779018	490	3	11,344612	34,780081
447	4	11,324387	34,779074	491	5	11,317501	34,78015
448	4	11,323723	34,779094	492	2	11,32139	34,780253
449	4	11,323601	34,779194	493	1	11,314076	34,780283
450	2	11,324897	34,779219	494	5	11,320896	34,780301
451	3	11,31278	34,779223	495	2	11,319945	34,780343
452	2	11,325386	34,779239	496	2	11,328294	34,780346
453	4	11,323432	34,77926	497	4	11,332858	34,780382
454	1	11,31581	34,779268	498	5	11,315962	34,780395

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
499	5	11,320616	34,780397	541	5	11,320027	34,781471
500	5	11,314876	34,780476	542	2	11,35752	34,781563
501	5	11,320295	34,780505	543	5	11,31394	34,781589
502	5	11,317935	34,780569	544	5	11,317149	34,781594
503	5	11,320164	34,780576	545	2	11,327726	34,781622
504	2	11,320006	34,780601	546	2	11,31347	34,781635
505	5	11,313776	34,780603	547	3	11,347327	34,781647
506	2	11,319184	34,780747	548	5	11,314598	34,781667
507	1	11,318634	34,780751	549	5	11,314926	34,781671
508	2	11,319469	34,780794	550	5	11,314942	34,781699
509	1	11,31322	34,780816	551	5	11,315699	34,781723
510	1	11,314458	34,780823	552	1	11,31433	34,78176
511	2	11,328063	34,780834	553	5	11,31811	34,781906
512	3	11,324375	34,780883	554	2	11,326838	34,782003
513	5	11,319756	34,780909	555	4	11,34931	34,782007
514	5	11,319132	34,78093	556	4	11,346702	34,782035
515	5	11,314829	34,780958	557	3	11,333937	34,782055
516	1	11,31586	34,780972	558	4	11,346326	34,782097
517	5	11,317109	34,781009	559	5	11,31821	34,782115
518	5	11,316894	34,781055	560	4	11,349062	34,782131
519	1	11,316277	34,781057	561	3	11,355604	34,782135
520	4	11,35841	34,781079	562	5	11,317779	34,782157
521	1	11,31301	34,7811	563	3	11,327389	34,782184
522	1	11,315929	34,781116	564	2	11,317699	34,782227
523	2	11,31767	34,781136	565	4	11,346264	34,782231
524	1	11,316446	34,781151	566	4	11,334268	34,782238
525	1	11,317275	34,781152	567	2	11,311058	34,782308
526	5	11,314199	34,781172	568	4	11,346421	34,782392
527	5	11,31587	34,78121	569	2	11,317377	34,782425
528	2	11,320834	34,781234	570	1	11,318632	34,782425
529	5	11,317617	34,781238	571	1	11,3172	34,782482
530	5	11,318671	34,781241	572	4	11,346164	34,782483
531	5	11,316737	34,781282	573	4	11,348148	34,782497
532	1	11,318949	34,781288	574	2	11,312534	34,782527
533	5	11,315634	34,781316	575	4	11,349386	34,782549
534	4	11,312539	34,781351	576	4	11,327077	34,782614
535	5	11,316524	34,781358	577	4	11,346373	34,782649
536	1	11,318718	34,781363	578	1	11,317107	34,782672
537	5	11,315302	34,781386	579	4	11,310873	34,782731
538	5	11,317237	34,781402	580	2	11,319754	34,782767
539	4	11,357659	34,78143	581	3	11,334436	34,782774
540	5	11,316331	34,78146	582	4	11,349043	34,782816

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
583	1	11,310678	34,782816	625	3	11,34208	34,784185
584	4	11,348691	34,782825	626	2	11,326318	34,784301
585	1	11,31654	34,782844	627	4	11,345859	34,78432
586	4	11,348001	34,782883	628	1	11,313122	34,784325
587	1	11,313118	34,782941	629	1	11,313955	34,78433
588	4	11,345403	34,782944	630	2	11,32596	34,78434
589	4	11,345588	34,782944	631	4	11,345407	34,784515
590	4	11,347515	34,782976	632	2	11,336206	34,784539
591	4	11,316304	34,782999	633	4	11,345731	34,784591
592	2	11,32688	34,783009	634	4	11,336511	34,784632
593	2	11,321706	34,783128	635	2	11,32102	34,784658
594	4	11,34718	34,783157	636	4	11,327135	34,784678
595	4	11,349376	34,78322	637	4	11,346116	34,784705
596	4	11,346708	34,783228	638	4	11,313238	34,78476
597	2	11,323214	34,783267	639	3	11,310784	34,784764
598	4	11,348991	34,783311	640	4	11,34743	34,784767
599	3	11,320656	34,783359	641	4	11,345398	34,7848
600	4	11,347694	34,783378	642	1	11,336832	34,784863
601	3	11,354177	34,783423	643	2	11,32841	34,784876
602	4	11,346304	34,783433	644	3	11,356881	34,784898
603	4	11,347458	34,783447	645	1	11,317441	34,784922
604	4	11,315752	34,783466	646	4	11,346383	34,784924
605	2	11,324217	34,783466	647	1	11,312828	34,784968
606	4	11,348629	34,783468	648	2	11,325726	34,785081
607	4	11,346787	34,783514	649	2	11,312554	34,785123
608	4	11,346304	34,783516	650	3	11,348217	34,785209
609	2	11,335446	34,783561	651	4	11,337153	34,785266
610	1	11,317299	34,783562	652	4	11,348881	34,785272
611	4	11,315519	34,783568	653	4	11,329211	34,785279
612	4	11,310871	34,783633	654	3	11,312351	34,78529
613	2	11,315172	34,783637	655	1	11,329809	34,785305
614	4	11,34644	34,783761	656	3	11,330361	34,785323
615	2	11,318833	34,783772	657	4	11,347049	34,785329
616	2	11,326559	34,783818	658	3	11,310988	34,785349
617	4	11,34723	34,783854	659	2	11,312254	34,785365
618	4	11,349462	34,783891	660	1	11,312206	34,785402
619	4	11,314721	34,783905	661	2	11,312179	34,785424
620	2	11,335713	34,783906	662	1	11,312148	34,785448
621	4	11,347877	34,78398	663	3	11,331292	34,785448
622	4	11,314506	34,784063	664	4	11,31925	34,785459
623	2	11,317323	34,784136	665	4	11,312093	34,785494
624	2	11,314344	34,784169	666	3	11,311035	34,785549

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
667	3	11,332628	34,785601	709	3	11,323489	34,786967
668	3	11,311932	34,785676	710	1	11,32237	34,786995
669	2	11,358984	34,785815	711	4	11,323383	34,787004
670	3	11,311079	34,78588	712	1	11,323192	34,787005
671	4	11,3254	34,785899	713	4	11,323615	34,787013
672	3	11,311546	34,785928	714	4	11,323222	34,787016
673	4	11,325256	34,78593	715	1	11,321974	34,787049
674	3	11,336791	34,785987	716	3	11,31794	34,787071
675	3	11,317373	34,786032	717	3	11,360936	34,787071
676	3	11,311272	34,786068	718	4	11,323368	34,787107
677	3	11,333562	34,786111	719	2	11,326859	34,787117
678	3	11,311015	34,786164	720	3	11,324757	34,787193
679	4	11,359804	34,786261	721	3	11,320936	34,787229
680	3	11,31072	34,786282	722	4	11,310677	34,787233
681	4	11,334035	34,786346	723	3	11,31727	34,787266
682	2	11,32127	34,786538	724	3	11,316106	34,78728
683	3	11,354381	34,786566	725	2	11,314529	34,787366
684	4	11,335428	34,786588	726	3	11,321356	34,787376
685	3	11,324033	34,786594	727	2	11,322715	34,787395
686	4	11,324176	34,786611	728	3	11,327263	34,787395
687	1	11,321915	34,78662	729	1	11,327886	34,787415
688	4	11,323843	34,786644	730	4	11,327638	34,787455
689	3	11,311058	34,786658	731	1	11,327817	34,787488
690	4	11,320848	34,786668	732	3	11,328516	34,787575
691	1	11,323586	34,78668	733	3	11,328574	34,787587
692	1	11,323147	34,786693	734	3	11,328139	34,787638
693	4	11,323907	34,786715	735	1	11,324569	34,787659
694	3	11,325032	34,786723	736	2	11,317013	34,78771
695	1	11,323312	34,786741	737	3	11,312009	34,787731
696	4	11,323762	34,786765	738	3	11,32198	34,787745
697	4	11,320196	34,786771	739	3	11,322322	34,787772
698	4	11,32385	34,786786	740	4	11,3277	34,787806
699	3	11,325472	34,786793	741	3	11,320624	34,78781
700	3	11,319925	34,786806	742	3	11,321593	34,787962
701	4	11,324105	34,786811	743	3	11,321909	34,788003
702	3	11,326141	34,786813	744	1	11,317797	34,788053
703	1	11,323004	34,786829	745	3	11,320871	34,788063
704	4	11,323741	34,786852	746	3	11,322113	34,788117
705	4	11,319616	34,786887	747	3	11,328401	34,788125
706	4	11,323862	34,78692	748	3	11,327869	34,788184
707	4	11,319074	34,786925	749	1	11,319307	34,788229
708	3	11,326567	34,786966	750	3	11,363259	34,788235
, 00	2	11,52001	2 1,700700	, 5 0	J	11,505207	21,700235

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
751	3	11,321864	34,788253	793	1	11,332108	34,792427
752	3	11,3108	34,78839	794	1	11,327773	34,792465
753	1	11,316614	34,788399	795	1	11,326745	34,792499
754	3	11,321576	34,788473	796	1	11,3326	34,792521
755	3	11,327439	34,788474	797	1	11,327085	34,792547
756	3	11,36306	34,788498	798	4	11,364562	34,792562
757	3	11,328158	34,788593	799	1	11,333249	34,792598
758	2	11,311299	34,788659	800	1	11,326764	34,792758
759	1	11,311165	34,788685	801	4	11,360427	34,7928
760	4	11,326995	34,788894	802	3	11,33369	34,792804
761	3	11,353421	34,788975	803	2	11,332077	34,79287
762	3	11,326737	34,788992	804	1	11,326193	34,792907
763	3	11,349548	34,789002	805	1	11,327277	34,792957
764	4	11,330251	34,789154	806	4	11,330944	34,792968
765	4	11,326587	34,789155	807	2	11,331572	34,792974
766	4	11,329898	34,789282	808	2	11,332794	34,793013
767	4	11,331679	34,789338	809	4	11,326005	34,793094
768	4	11,360239	34,789399	810	3	11,356409	34,7931
769	3	11,327904	34,789429	811	1	11,327522	34,793133
770	3	11,359499	34,789431	812	2	11,330063	34,793138
771	4	11,33258	34,789541	813	1	11,326507	34,793184
772	3	11,326054	34,789608	814	1	11,325883	34,793282
773	3	11,327634	34,789749	815	1	11,332347	34,793332
774	3	11,325608	34,78999	816	3	11,339918	34,79334
775	4	11,333174	34,790017	817	4	11,326842	34,793405
776	3	11,346055	34,790053	818	4	11,361269	34,793556
777	3	11,356752	34,790161	819	6	11,325762	34,793602
778	3	11,327083	34,790355	820	1	11,326339	34,793784
779	2	11,325134	34,79036	821	3	11,362975	34,793921
780	1	11,332883	34,790552	822	3	11,365018	34,793926
781	1	11,326954	34,790794	823	3	11,356741	34,793959
782	3	11,354772	34,790842	824	2	11,341625	34,79405
783	1	11,32691	34,791259	825	3	11,343228	34,794058
784	3	11,352246	34,791604	826	3	11,329615	34,794098
785	3	11,33069	34,791913	827	4	11,331583	34,794132
786	2	11,340604	34,791936	828	4	11,357085	34,794243
787	2	11,329216	34,792071	829	6	11,325781	34,794262
788	2	11,330964	34,792143	830	3	11,362481	34,794393
789	1	11,328354	34,792183	831	4	11,330976	34,794523
790	1	11,328664	34,792223	832	3	11,362765	34,794538
791	3	11,346602	34,792258	833	1	11,327198	34,794608
792	4	11,364777	34,792417	834	4	11,326851	34,794728

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
835	4	11,365376	34,794742	877	5	11,326458	34,797467
836	6	11,325607	34,794752	878	3	11,340046	34,797503
837	1	11,330525	34,794788	879	3	11,353263	34,797553
838	4	11,362308	34,794902	880	5	11,327019	34,797587
839	4	11,365515	34,794921	881	1	11,340636	34,797599
840	3	11,352214	34,794999	882	2	11,343675	34,797703
841	6	11,325723	34,795002	883	1	11,326149	34,797721
842	4	11,327352	34,795038	884	1	11,327724	34,797763
843	1	11,330245	34,795118	885	4	11,353388	34,797766
844	3	11,361811	34,795144	886	1	11,340126	34,797838
845	2	11,32888	34,79518	887	5	11,326841	34,797852
846	6	11,325376	34,795242	888	2	11,340604	34,797854
847	3	11,357616	34,795364	889	1	11,327438	34,797921
848	6	11,325273	34,795397	890	4	11,340548	34,797942
849	1	11,326354	34,795517	891	4	11,353474	34,797955
850	4	11,329835	34,795518	892	5	11,325949	34,798013
851	3	11,36085	34,795573	893	1	11,326813	34,798037
852	1	11,328608	34,795582	894	3	11,340373	34,798174
853	1	11,329693	34,795706	895	1	11,327095	34,798334
854	1	11,327431	34,795717	896	5	11,326604	34,798366
855	1	11,328457	34,795878	897	1	11,327784	34,798366
856	4	11,329405	34,795946	898	4	11,340213	34,798373
857	1	11,326729	34,796222	899	5	11,32796	34,798412
858	1	11,329004	34,796269	900	1	11,339966	34,79854
859	4	11,328212	34,79627	901	5	11,326858	34,798649
860	3	11,358184	34,796298	902	1	11,326203	34,798675
861	4	11,365724	34,796418	903	4	11,339966	34,798692
862	1	11,327992	34,796432	904	1	11,328012	34,798699
863	3	11,352434	34,796458	905	1	11,326717	34,798873
864	1	11,328755	34,796562	906	1	11,342949	34,798939
865	4	11,365765	34,7967	907	1	11,328108	34,798999
866	4	11,327601	34,796706	908	1	11,326579	34,799051
867	4	11,327762	34,796797	909	5	11,327898	34,799301
868	3	11,358501	34,796845	910	3	11,359547	34,799302
869	1	11,328356	34,796944	911	1	11,344178	34,799362
870	1	11,327601	34,79708	912	4	11,365974	34,799367
871	4	11,365821	34,797083	913	5	11,326319	34,799489
872	6	11,327034	34,797154	914	3	11,354987	34,799559
873	4	11,35312	34,797215	915	4	11,365844	34,799653
874	6	11,327362	34,797328	916	2	11,342375	34,799769
875	1	11,327834	34,797405	917	1	11,326168	34,799776
876	4	11,365947	34,797424	918	3	11,357777	34,799978

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
919	1	11,325935	34,800037	961	1	11,347469	34,801728
920	3	11,360732	34,800289	962	2	11,327076	34,801764
921	3	11,365812	34,80031	963	1	11,340697	34,801783
922	4	11,350726	34,800414	964	3	11,334361	34,801807
923	1	11,332443	34,800435	965	3	11,353227	34,801807
924	3	11,328465	34,800437	966	3	11,352128	34,801866
925	2	11,333755	34,80045	967	3	11,354949	34,801903
926	1	11,33008	34,800482	968	4	11,365851	34,801969
927	3	11,359402	34,800503	969	2	11,330981	34,801997
928	3	11,350371	34,800605	970	4	11,363485	34,801997
929	4	11,36154	34,800611	971	4	11,363657	34,802124
930	2	11,345917	34,800615	972	4	11,32939	34,802164
931	1	11,345087	34,800624	973	2	11,332274	34,802204
932	3	11,328604	34,800706	974	3	11,354397	34,802306
933	4	11,36166	34,800777	975	4	11,36527	34,802397
934	2	11,34453	34,800797	976	1	11,329655	34,802481
935	4	11,330439	34,800804	977	3	11,334811	34,802488
936	2	11,347998	34,800806	978	2	11,330246	34,802516
937	3	11,35658	34,800873	979	4	11,365365	34,80254
938	2	11,331872	34,800875	980	4	11,365227	34,802545
939	4	11,341071	34,800879	981	1	11,340725	34,802549
940	3	11,333969	34,8009	982	3	11,364294	34,802552
941	3	11,349332	34,800922	983	3	11,341528	34,802558
942	3	11,343481	34,800925	984	3	11,357299	34,802611
943	3	11,342869	34,800934	985	1	11,342431	34,802631
944	1	11,341327	34,801053	986	4	11,36607	34,802669
945	4	11,365812	34,801083	987	1	11,329886	34,80271
946	1	11,326656	34,801092	988	4	11,364899	34,802726
947	3	11,356237	34,801109	989	3	11,342614	34,80275
948	2	11,34223	34,801126	990	4	11,333401	34,802751
949	4	11,339593	34,801158	991	4	11,327611	34,802894
950	2	11,350936	34,801162	992	4	11,367688	34,802916
951	3	11,362385	34,801254	993	1	11,343106	34,802932
952	2	11,331568	34,80126	994	3	11,333835	34,802976
953	1	11,35119	34,801388	995	4	11,366803	34,802978
954	4	11,351801	34,801404	996	3	11,334828	34,803019
955	1	11,351046	34,801418	997	4	11,343444	34,803069
956	3	11,341738	34,801418	998	4	11,326153	34,803159
957	4	11,337713	34,801537	999	3	11,341865	34,803206
958	4	11,365865	34,801575	1000	1	11,325482	34,803275
959	2	11,329185	34,801592	1001	3	11,352426	34,803296
960	2	11,331518	34,801657	1002	4	11,364851	34,803321
		,	,			,	,

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
1003	2	11,32765	34,803373	1045	1	11,359116	34,80451
1004	3	11,334157	34,803389	1046	4	11,356618	34,804521
1005	4	11,342376	34,803425	1047	2	11,345278	34,804529
1006	4	11,36497	34,803516	1048	2	11,360441	34,804537
1007	4	11,365851	34,803516	1049	4	11,36192	34,804566
1008	4	11,366198	34,803525	1050	2	11,348509	34,804566
1009	4	11,364323	34,803549	1051	3	11,351929	34,804575
1010	2	11,344092	34,80358	1052	4	11,366907	34,804591
1011	4	11,368035	34,803601	1053	4	11,357156	34,804601
1012	3	11,352375	34,803679	1054	1	11,347952	34,804612
1013	4	11,367654	34,80372	1055	3	11,350352	34,80463
1014	3	11,365888	34,803753	1056	4	11,352054	34,804641
1015	1	11,326124	34,803788	1057	4	11,365351	34,804644
1016	1	11,325858	34,803801	1058	4	11,366136	34,804648
1017	4	11,367131	34,80382	1059	1	11,358859	34,804651
1018	4	11,329972	34,803839	1060	4	11,355732	34,804653
1019	4	11,365513	34,803858	1061	3	11,362889	34,804661
1020	4	11,36803	34,803863	1062	1	11,345634	34,804694
1021	4	11,365223	34,803868	1063	1	11,340697	34,804739
1022	4	11,36696	34,803882	1064	4	11,367369	34,804786
1023	4	11,358104	34,803888	1065	4	11,361923	34,804794
1024	4	11,327822	34,804006	1066	1	11,328138	34,804886
1025	4	11,362434	34,804073	1067	3	11,3303	34,804886
1026	4	11,358273	34,804141	1068	4	11,330603	34,80492
1027	1	11,341181	34,804146	1069	4	11,367707	34,804953
1028	3	11,344612	34,804219	1070	4	11,361549	34,804991
1029	4	11,332013	34,804221	1071	3	11,331273	34,804992
1030	4	11,364928	34,804225	1072	4	11,362323	34,804998
1031	4	11,362137	34,804266	1073	4	11,36278	34,805008
1032	4	11,36735	34,804282	1074	4	11,36775	34,805048
1033	3	11,361601	34,804285	1075	1	11,358919	34,805101
1034	1	11,353948	34,80431	1076	4	11,345789	34,805104
1035	4	11,360196	34,804312	1077	2	11,331893	34,805106
1036	3	11,32651	34,80432	1078	1	11,32817	34,805143
1037	2	11,358789	34,804326	1079	4	11,360753	34,805151
1038	1	11,359386	34,80436	1080	2	11,342194	34,805159
1039	4	11,368211	34,804363	1081	3	11,344393	34,805177
1040	4	11,366331	34,80443	1082	2	11,343371	34,805177
1041	3	11,330654	34,804451	1083	1	11,341391	34,805177
1042	3	11,354672	34,804456	1084	4	11,332132	34,805185
1043	4	11,354701	34,804479	1085	3	11,344046	34,805187
1044	4	11,357455	34,804484	1086	3	11,345141	34,805196

N	Classe	Longitude X	Lattitude Y	N	Classe	Longitude X	Lattitude Y
1087	1	11,342522	34,805232	1101	1	11,326656	34,805772
1088	4	11,355482	34,805243	1102	4	11,336383	34,805825
1089	1	11,326649	34,805248	1103	1	11,328347	34,805846
1090	3	11,33287	34,805256	1104	4	11,337701	34,805879
1091	4	11,361417	34,805297	1105	2	11,326623	34,806323
1092	2	11,33339	34,805299	1106	4	11,328573	34,807241
1093	3	11,333889	34,805369	1107	1	11,326748	34,807402
1094	4	11,339259	34,80544	1108	2	11,326696	34,807841
1095	4	11,334256	34,805509	1109	2	11,32571	34,807842
1096	4	11,360246	34,805687	1110	2	11,328068	34,808266
1097	4	11,359152	34,805689	1111	4	11,326479	34,808591
1098	2	11,338025	34,805707	1112	1	11,326692	34,808651
1099	3	11,335235	34,805717	1113	4	11,32669	34,808826
1100	3	11,338187	34,805723				

ANNEXE 2 - ANALYSES PHENOLOGIQUES

Kerkennah (-1m): 23 juillet 2015

		г	,		NII .		_		г			NII .	2		T 70	г	,		NTI 4	
1	LT	B	10	état	Nb A c	4	2	LT	В	1	état	Nb A c	3	3	LT	B 50	10	état	Nb A c	4
Α	745	58	10	c	Nb A	4	A	290	60	11	c	Nb A	3	A	596	58	10	c	Nb A	4
	817	59	10	с	Lg A	887,3		462	58	11	с	Lg A	482,7		910	59	10	с	Lg A	812,8
	1032	55	10	c	LB	54,5		696	49	11	с	LB	55,7		786	55	10	c	LB	54,0
	955	46	10	c	la A	10,0						la A	11,0		959	44	10	c	la A	10,0
					Coef A	100,0%						Coef A	####						Coef A	100,0%
					LAI A LAA	354,9						LAI A LAA	159,3						LAI A LAA	325,1
					m ²	25,1						m ²	11,3						m ²	23,0
I	129		9		Nb I c	0	I	330		11		Nb I c	0	I					Nb I c	0
					Nb I	1		86		11		Nb I	2						Nb I	0
					Lg I	129,0						Lg I	208,0						Lg I	
					la I	9,0						la I	11,0						la I	
					Coef I	0,0%						Coef I	0,0%						Coef I	
					LAI I	11,6						LAI I	45,8						LAI I	
J	22		8		LAI m ²	0,8	J	15		9		LAI m ²	3,2	J	23		10		LAI m²	#####
1	3		4		Coef G	80,0%		2		5		Coef G	60,0%		3		4		Coef G	100,0%
	3		7		LAI G	366,5		_		3		LAI G	205,0		3		7		LAI G	325,1
					LAG	300,3						LAG	203,0						LAG	323,1
					m ²	25,9						m ²	14,5						m²	#####
_														1						
4	LT	В	1	état	Nb A c	4	_	TT	В		état	Nb A c		_	T OD			état	Nb A c	2
A	7//			ctat	1	4	5	LT		l	etat		3	6	LT	В	l	etat		
	766	56	10	С	Nb A	4	A	795	58	10	c	Nb A	3	A	659	57	10	с	Nb A	3
	596	57	10 10	c c	Nb A Lg A	4 815,8		795 810	58 56	10 9		Nb A Lg A	3 837,0		659 602	57 53	10 10		Nb A Lg A	3 691,0
	596 910	57 55	10 10 10	c c c	Nb A Lg A LB	4 815,8 53,5		795	58	10	c	Nb A Lg A LB	3 837,0 51,3		659	57	10	с	Nb A Lg A LB	3 691,0 52,7
	596	57	10 10	c c	Nb A Lg A LB la A	4 815,8 53,5 10,0		795 810	58 56	10 9	c c	Nb A Lg A LB la A	3 837,0 51,3 9,3		659 602	57 53	10 10	с	Nb A Lg A LB la A	3 691,0 52,7 10,3
	596 910	57 55	10 10 10	c c c	Nb A Lg A LB la A Coef A	4 815,8 53,5 10,0 100,0%		795 810	58 56	10 9	c c	Nb A Lg A LB la A Coef A	3 837,0 51,3 9,3 ####		659 602	57 53	10 10	с	Nb A Lg A LB la A Coef A	3 691,0 52,7 10,3 66,7%
	596 910	57 55	10 10 10	c c c	Nb A Lg A LB la A Coef A LAI A	4 815,8 53,5 10,0		795 810	58 56	10 9	c c	Nb A Lg A LB la A Coef A LAI A	3 837,0 51,3 9,3		659 602	57 53	10 10	с	Nb A Lg A LB la A Coef A LAI A	3 691,0 52,7 10,3
	596 910	57 55	10 10 10	c c c	Nb A Lg A LB la A Coef A	4 815,8 53,5 10,0 100,0%		795 810	58 56	10 9	c c	Nb A Lg A LB la A Coef A	3 837,0 51,3 9,3 ####		659 602	57 53	10 10	с	Nb A Lg A LB la A Coef A	3 691,0 52,7 10,3 66,7%
I	596 910	57 55	10 10 10	c c c	Nb A Lg A LB la A Coef A LAI A LAA	4 815,8 53,5 10,0 100,0% 326,3		795 810	58 56	10 9	c c	Nb A Lg A LB la A Coef A LAI A LAA	3 837,0 51,3 9,3 #### 234,4		659 602	57 53	10 10	с	Nb A Lg A LB la A Coef A LAI A LAA	3 691,0 52,7 10,3 66,7% 214,2
I	596 910 991	57 55	10 10 10 10	c c c	Nb A Lg A LB la A Coef A LAI A LAA m²	4 815,8 53,5 10,0 100,0% 326,3 23,1	A	795 810 906	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m²	3 837,0 51,3 9,3 #### 234,4	A	659 602 812	57 53	10 10 11	с	Nb A Lg A LB la A Coef A LAI A LAA m²	3 691,0 52,7 10,3 66,7% 214,2
I	596 910 991 810	57 55	10 10 10 10	c c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c	4 815,8 53,5 10,0 100,0% 326,3 23,1	A	795 810 906	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c	3 837,0 51,3 9,3 #### 234,4 16,6	A	659 602 812	57 53	10 10 11	с	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c	3 691,0 52,7 10,3 66,7% 214,2 15,2
I	596 910 991 810 216	57 55	10 10 10 10 10	c c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I	4 815,8 53,5 10,0 100,0% 326,3 23,1 0 3	A	795 810 906	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c	3 837,0 51,3 9,3 #### 234,4 16,6	A	659 602 812	57 53	10 10 11	с	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I	3 691,0 52,7 10,3 66,7% 214,2 15,2 0
I	596 910 991 810 216	57 55	10 10 10 10 10	c c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I	4 815,8 53,5 10,0 100,0% 326,3 23,1 0 3 355,7	A	795 810 906	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I	3 837,0 51,3 9,3 #### 234,4 16,6 0 2 254,5	A	659 602 812	57 53	10 10 11	с	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I	3 691,0 52,7 10,3 66,7% 214,2 15,2 0 2 355,5
I	596 910 991 810 216	57 55	10 10 10 10 10	c c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I	4 815,8 53,5 10,0 100,0% 326,3 23,1 0 3 355,7 9,3	A	795 810 906	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I	3 837,0 51,3 9,3 #### 234,4 16,6 0 2 254,5 10,0	A	659 602 812	57 53	10 10 11	с	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I	3 691,0 52,7 10,3 66,7% 214,2 15,2 0 2 355,5 10,0
	596 910 991 810 216 41	57 55	10 10 10 10 10 9 10 9	c c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I	4 815,8 53,5 10,0 100,0% 326,3 23,1 0 3 355,7 9,3 0,0% 99,6	I	795 810 906 390 119	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I	3 837,0 51,3 9,3 #### 234,4 16,6 0 2 254,5 10,0 0,0% 50,9	I	659 602 812 594 117	57 53	10 10 11 11 10 10	с	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI I	3 691,0 52,7 10,3 66,7% 214,2 15,2 0 2 355,5 10,0 0,0% 71,1
I	596 910 991 810 216	57 55	10 10 10 10 10	c c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI m²	4 815,8 53,5 10,0 100,0% 326,3 23,1 0 3 355,7 9,3 0,0% 99,6 7,1	A	795 810 906	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI m²	3 837,0 51,3 9,3 #### 234,4 16,6 0 2 254,5 10,0 0,0% 50,9 3,6	A	659 602 812 594 117	57 53	10 10 11 11 10 10	с	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI I LAI I m²	3 691,0 52,7 10,3 66,7% 214,2 15,2 0 2 355,5 10,0 0,0% 71,1 5,0
	596 910 991 810 216 41	57 55	10 10 10 10 10 9 10 9	c c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI m² Coef G	4 815,8 53,5 10,0 100,0% 326,3 23,1 0 3 355,7 9,3 0,0% 99,6 7,1 57,1%	I	795 810 906 390 119	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI m² Coef G	3 837,0 51,3 9,3 #### 234,4 16,6 0 2 254,5 10,0 0,0% 50,9 3,6 60,0%	I	659 602 812 594 117	57 53	10 10 11 11 10 10	с	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI I LAI m² Coef G	3 691,0 52,7 10,3 66,7% 214,2 15,2 0 2 355,5 10,0 0,0% 71,1 5,0
	596 910 991 810 216 41	57 55	10 10 10 10 10 9 10 9	c c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI m²	4 815,8 53,5 10,0 100,0% 326,3 23,1 0 3 355,7 9,3 0,0% 99,6 7,1	I	795 810 906 390 119	58 56	10 9 9	c c	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI m²	3 837,0 51,3 9,3 #### 234,4 16,6 0 2 254,5 10,0 0,0% 50,9 3,6	I	659 602 812 594 117	57 53	10 10 11 11 10 10	с	Nb A Lg A LB la A Coef A LAI A LAA m² Nb I c Nb I Lg I la I Coef I LAI I LAI I LAI I m²	3 691,0 52,7 10,3 66,7% 214,2 15,2 0 2 355,5 10,0 0,0% 71,1 5,0

7	LT	R	1	état	Nb A c	2	8	LT	R	1	état	Nb A c	2

A	540	57	11	с	Nb A	4	A	753	53	11	с	Nb A	3
	698	55	11	c	Lg A	746,8		972	55	10	c	Lg A	898,0
	931	53	11		LB	46,8		969	45	10	-	LB	51,0
	818	22	10		la A	10,8						la A	10,3
	010				Coef A	50,0%						Coef A	66,7%
					LAI A	321,1						LAI A	278,4
					LAA m²	22,7						LAA m ²	19,7
	120		1.1					276		10			
I	139		11		Nb I c	0	I	376		10		Nb I c	0
					Nb I	1						Nb I	1
					Lg I	139,0						Lg I	376,0
					la I	11,0						la I	10,0
					Coef I	0,0%						Coef I	0,0%
					LAI I	15,3						LAI I	37,6
J	7		9		LAI m ²	1,1	J	35		10		LAI m ²	2,7
	3		5		Coef G	40,0%		2		4		Coef G	50,0%
					LAI G	336,4						LAI G	316,0
					LAG m ²	23,8						LAG m ²	22,4

Kerkennah (-0.8m) : 27 iuillet 2015

							r	(CIN	51111a	(-	0,011	ı) . Zı	juillet :	2013								
9	LT	В	I	état	Nb A c		2	10	LT	В	I	état	Nb A c		2	11	LT	В	I	état	Nb A c	2
Α	656	55	11	С	Nb A		3	Α	780	48	9	С	Nb A		2	Α	389	50	11	С	Nb A	2
	414	54	11	С	Lg A	6	45,0		545	55	10	С	Lg A	6	62,5		596	46	10	С	Lg A	492,5
	865	50	11		LB		53,0						LB		51,5						LB	48,0
					la A		11,0						la A		9,5						la A	10,5
					Coef A	66	6,7%						Coef A	##	###						Coef A	100,0%
					LAI A	2	12,9						LAI A	1	25,9						LAI A	103,4
					LAA m²		15,5						LAA m²		9,2						LAA m²	7,6
ı	702		11		Nblc		0	1	752		10	С	Nblc		1	1	959		10		Nblc	0
	158		10		Nb I		3		76		10		Nb I		2						Nb I	1
	100		10		Lg I	3	20,0						Lg I	4	14,0						Lgl	959,0
					la I		10,3						la I		10,0						la I	10,0
					Coef I	(0,0%						Coef I	50	0,0%						Coef I	0,0%
					LAII		99,2						LAII		82,8						LAII	95,9
J	21		10		LAI m²		7,2	J	3		6		LAI m²		6,0	J	38		10		LAI m²	7,0
	8		9		Coef G	33	3,3%						Coef G	75	5,0%		4		5		Coef G	66,7%
	8		9		LAI G	3	12,1						LAI G	2	208,7						LAI G	199,3
	3		4		LAG m²		22,8						LAG m²		15,2						LAG m²	14,6
12	LT	В	ı	état	Nb A c		3	13	LT	В	I	état	Nb A c		3	14	LT	В	I	état	Nb A c	4
Α	642	58	10	С	Nb A		3	Α	831	55	11	С	Nb A		4	Α	539	54	11	С	Nb A	4
	832	56	10	С	Lg A	6	84,0		820	53	11	С	Lg A		312,0		705	54	11	С	Lg A	684,3
	578	35	10	С	LB		49,7		795	50	11	С	LB		49,8		720	47	11	С	LB	49,5
					la A		10,0		802	41	11		la A		11,0		773	43	11	С	la A	11,0
					Coef A		0,0%						Coef A		5,0%						Coef A	100,0%
					LAI A		.05,2						LAI A		57,3						LAI A	301,1
					LAA m²		15,0						LAA m²		26,1						LAA m²	22,0
ı	125		10		Nblc		0	1	318		11		Nb I c		0	1	478		11		Nblc	0
					Nb I		1		167		11		Nb I		2		195		11		Nb I	2
					Lgl		25,0						Lgl		42,5						Lgl	336,5
					la I		10,0						la I		11,0						la I	11,0
					Coef I		0,0%						Coef I		0,0%						Coef I	0,0%
					LAII		12,5						LAII		53,4						LAII	74,0
J	18		9		LAI m²		0,9	J	5		8		LAI m²		3,9	J	5		9		LAI m²	5,4
	6		6		Coef G		5,0%						Coef G		0,0%						Coef G	66,7%
					LAI G		17,7						LAI G		10,6						LAI G	375,1
				1	LAG m ²		15,9	1	<u> </u>				LAG m ²		30,0						LAG m ²	27,4
15	LT	В		état	Nb A c	4	16	LT	В	ı	état	Nb A	С	3								
Α	775	56	11		Nb A	5	Α	827	55	10	С	Nb A		3								
	531	55	11	С	Lg A	559,2		838	52	11	С	Lg A	80	0,00								

	345	43	11	С	LB	47,0		762	42	10	С	LB	49,7
	577	41	11	С	la A	11,0						la A	10,3
	568	40	11	С	Coef A	80,0%						Coef A	####
					LAI A	307,6						LAI A	250,8
					LAA m²	22,5						LAA m²	18,3
1	225		11		Nblc	0	1	447		10		Nblc	0
	221		10		Nb I	4		139		10		Nb I	2
	117		9		Lg I	166,3						Lg I	293,0
	102		10		la I	10,0						la I	10,0
					Coef I	0,0%						Coef I	0,0%
					LAII	66,5						LAII	58,6
J	11		8		LAI m²	4,9	J	3		9		LAI m²	4,3
					Coef G	44,4%						Coef G	60,0%
					LAI G	374,1						LAI G	309,4
					LAG m²	27,3						LAG m²	22,6

Kerkennah (-1,3m) : 28 juillet 2015

					Kerkennan	(-1,311	ı) . 20 jui
17	LT	В	l état	Nb A c	1	18	LT
Α	460	59	С	Nb A	3	Α	815
	900	58		Lg A	738,3		627
	855	43		LB	53,3		
				la A	10,0		
				Coef A	33,3%		
				LAI A	221,5		
				LAA m²	15,8		
- 1	106			Nblc	0	1	395
				Nb I	1		
				Lg I	106,0		
				la I	10,0		
				Coef I	0,0%		
				LAII	10,6		
J	8			LAI m²	0,8	J	23
				Coef G	25,0%		
				LAI G	232,1		
				LAG m²	16,5		

18	LT	В	ı	état	Nb A c	1
Α	815	57	10	С	Nb A	2
	627	53	10		Lg A	721,0
					LB	55,0
					la A	10,0
					Coef A	50,0%
					LAI A	144,2
					LAA m²	10,3
- 1	395		10		Nb I c	0
					Nb I	1
					Lg I	395,0
					la I	10,0
					Coef I	0,0%
					LAH	39,5
J	23		10		LAI m²	2,8
					Coef G	33,3%
					LAI G	183,7
					LAG m ²	13,1

LT	В	I	état	Nb A c	3
654	52	11	С	Nb A	4
640	54	11	С	Lg A	709,8
745	48	11	С	LB	47,8
800	37	11		la A	11,0
				Coef A	75,0%
				LAI A	312,3
				LAA m²	22,3
191		11		Nblc	0
51		11		Nb I	2
				Lg I	121,0
				la I	11,0
				Coef I	0,0%
				LAII	26,6
3		7		LAI m²	1,9
				Coef G	50,0%
				LAI G	338,9
					24,2
	654 640 745 800	654 52 640 54 745 48 800 37	654 52 11 640 54 11 745 48 11 800 37 11	654 52 11 c 640 54 11 c 745 48 11 c 800 37 11	654 52 11 C Nb A 640 54 11 C Lg A 745 48 11 C LB 800 37 11 la A Coef A LAI A LAA m² 191 11 Nb I c Nb I Lg I la I Coef I LAI I A LAI m² Coef G

20	LT	В	I	état	Nb A c	3
Α	514	58	11	С	Nb A	4
	371	52	11	С	Lg A	595,3
	639	55	11	С	LB	53,8
	857	50	11		la A	11,0
					Coef A	75,0%
					LAI A	261,9
					LAA m²	18,7
1	360		11		Nblc	0
	202		10		Nb I	3
	116		11		Lg I	226,0
					la I	10,7
					Coef I	0,0%
					LAII	72,3
J	25		10		LAI m ²	5,2
	5		7		Coef G	42,9%
					LAI G	334,2
					LAG m²	23,8

21	LT	В	ı	état	Nb A c	4
Α	600	54	11	С	Nb A	5
	761	55	11	С	Lg A	687,2

22	LT	В	I	état	Nb A c	4
Α	357	56	11	С	Nb A	4
	771	54	11	С	La A	687.8

	611	54	11	С	LB	47,0
	870	50	11	С	la A	11,0
	594	22	11		Coef A	80,0%
					LAI A	378,0
					LAA m²	26,9
1	254		11		Nblc	0
	88		11		Nb I	2
					Lg I	171,0
					la I	11,0
					Coef I	0,0%
					LAII	37,6
J	3		6		LAI m²	2,7
					Coef G	57,1%
					LAI G	415,6
					LAG m ²	29,6

1	1					
	878	49	11	С	LB	47,0
	745	29	11	С	la A	11,0
					Coef A	100,0%
					LAI A	302,6
					LAA m²	21,6
1	157		11		Nblc	0
					Nb I	1
					Lg I	157,0
					la I	11,0
					Coef I	0,0%
					LAII	17,3
J	9		9		LAI m²	1,2
					Coef G	80,0%
					LAI G	319,9
					LAG m²	22,8

23	LT	В	l état	Nb A c	3
Α	828	53	С	Nb A	3
	771	52	С	Lg A	810,0
	831	48	С	LB	51,0
				la A	11,0
				Coef A	100,0%
				LAI A	267,3
				LAA m²	19,1
ı	756			Nb I c	1
	195		С	Nb I	2
				Lg I	475,5
				la I	10,0
				Coef I	50,0%
				LAII	95,1
J	24			LAI m²	6,8
	3			Coef G	80,0%
	2			LAI G	362,4
				LAG m²	25,8

					r	
24	LT	В	1	état	Nb A c	2
Α	573	57	11	С	Nb A	2
	953	52	11	С	Lg A	763,0
					LB	54,5
					la A	11,0
					Coef A	####
					LAI A	167,9
					LAA m²	12,0
1	790		10		Nblc	1
	89		10	С	Nb I	2
					Lg I	439,5
					la I	10,0
					Coef I	50,0%
					LAII	87,9
J	5		8		LAI m²	6,3
					Coef G	75,0%
					LAI G	255,8
					LAG m²	18,2

Synthèse	Moy	EcT	IC			
Nb A c	2,8	0,96	0,39			
Nb A	3,4	0,88	0,35			
Lg A	718,0	110,82	44,34			
LB	51,1	2,88	1,15			
la A	10,5	0,54	0,22			
Coef A	84,1%	0,20	0,08			
LAI A	255,6	77,25	30,91			
LAA m²	18,3	5,50	2,20			
Nblc	0,1	0,34	0,14			
Nb I	1,8	0,88	0,35			
LgI	294	184,55	73,83			
la I	10,3	0,57	0,23			
Coef I	6,5%	0,17	0,07			

Synthèse	Moy	EcT	IC
LAII	54,9	30,57	12,23
LAI m²	3,8	2,31	0,92
Nb G	5,2	1,40	0,56
Lg G	510,6	261,34	104,56
la G	10,4	0,56	0,23
Coef G	58,4%	0,18	0,07
LAI G	308,1	72,12	28,85
LAG m²	21,1	6,85	2,74
Nb G	5,2	1,40	0,56

ANNEXE 3 - ANALYSE LEPIDOCHRONOLOGIQUE

Kerkennah (-1m) : 23 juillet 2015

		Nb	cycl.			Nb	cycl.			Nb	cycl.			Nb	cycl.			Nb cycl.			
	1	:	•	4,0	2	:	•	3,0	3	:	•	3,0	4	:	•	8,0		5	:	•	3,0
Су	m	М	Nb	L R	m	М	Nb	L R	m	М	Nb	LR	m	М	Nb	LR		m	М	Nb	LR
1 2 3 4 5 6 7 8 9 10 11 12	4 11 18 25 33	8 15 21 28	4 7 7 7 8	4 10 8 14	5 13 21 27	8 17 24 30	5 8 8 6	28 24 15	4 10 17 24	7 14 21 28	4 6 7 7	10 11 8	4 10 16 23 30 37 44 54 61	7 13 19 25 34 41 48 57 65	4 6 6 7 7 7 7 10 7	20 23 22 26 27 20 29 20	F	5 14 20 29	1 9 17 25	5 9 6 9	31 21 25
14 15 S			33	36			27	67			24	29			61	187				29	77
m			8,3	9,0			9,0	22,3			8,0	9,7			7,6	23,4				9,7	25,7

		Nb	cycl.	-		Nb	cycl.			Nb	cycl.			Nb	cycl.			Nb	cycl.	
	6	:	•	1,0	7	:		-1,0	8	:	•	-1,0	9	:	•	-1,0	10	:	•	-1,0
Су	m	М	Nb	L R	m	М	Nb	L R	m	М	Nb	L R	m	М	Nb	L R	m	М	Nb	L R
1 2			0 0				0 0				0 0				0				0 0	
3 4 5			0 0 0				0 0 0				0 0 0				0 0 0				0 0 0	
6 7 8 9			0				0				0				0					
10 11 12																				
13 14 15																				
S m			0,0	0,0			0,0	0,0			0,0	0,0			0,0	0,0			0,0	0,0

Synthèse	Moy	EcT	IC		
Nb. faisc.	5				
Rang m1	4,4	1	1		
Rang M1	7,8	0,8	0,7		
Nb. écaille	6,7	1,5	1,3		
Long. Rhi.	18,9	8,0	7,0		

Kerkennah (-1m) : 27 juillet 2015

	1	Nb (cycl.	4,0		2	Nb :	cycl.	7,0	3	Nb :	cycl.	7,0		4	Nb (cycl.	4,0		5	Nb cyc	l. :	7,0	
Су	m	М	Nb	LR		m	М	Nb	LR	m	М	Nb	LR		m	М	Nb	LR		m	М	Nb	L R	
		1					2				1										2			
1	5	9	5	28		4	8	4	14	5	9	5	23		4	9	4	37	F	6	8	6	10	
2	13	17	8	28		12	15	8	8	12	15	7	20	F	13	16	9	25		11	14	5	12	F
3	23	27	10	26		18	21	6	7	18	22	6	30		20	23	7	23		19	22	8	14	
4	31	35	8	32	F	24	27	6	5	27	30	9	14		26	30	6	18		25	28	6	8	
5	39	43	8			29	32	5	6	33	38	6	13		33		7			31	35	6	12	
6						35	39	6	6	42	46	9	20							37	40	6	5	
7						42	46	7	7	51	55	9	24							43	45	6	5	
8						49	52	7	8	59		8								50		7		
9																								
10																								
11																								
12																								
13																								
14																								
15			20	444				40	04				444				20	400					00	
S			39	114				49	61			59	144				33	103				50	66	
m			9,8	28,5				7,0	8,7			8,4	20,6				8,3	25,8				7,1	9,4	

Cv		М	NIb	LR		М	Nb	LR	m	М	Nb	L R		N/I	Nb	I B		М	Nb	L
Су	m	IVI	IND	LK	m	IVI	ND	LK	1111	IVI	ND	LK	m	IVI	ND	LK	m	IVI	IND	ĸ
			_				_				0				0				_	
1			0				0				0				0				0	
2			0				0				0				0				0	
3			0				0				0				0				0	
4			0				0				0				0				0	
5			0				0				0				0				0	
6			0				0				0				0					
7																				
8																				
9																				
10																				
11																				
12																				
13																				
14																				
15																				
S			0	0			0	0			0	0			0	0			0	0
m			0,0	0,0			0,0	0,0			0,0	0,0			0,0	0,0			0,0	0,0

Synthèse	Moy	EcT	IC
Nb. faisc.	5		
Rang m1	4,8	1	1
Rang M1	8,6	0,5	0,5
Nb. écaille	6,8	1,5	1,3
Long. Rhi.	16,3	9,4	8,2

Kerkennah (-1,3m) : 28 juillet 2015

		Nb c	ycl.				Nb	cycl.	14,			Nb c	ycl.	11,			Nb o	cycl.	14,			Nb o	ycl.	13,	
	1	:		9,0		2	:		0		3	:		0		4	:		0		5	:		0	
<u> </u>	1																								
Су	m	M	Nb	LR		m	M	Nb	LR		m	М	Nb	LR		m	М	Nb	LR		m	M	Nb	LR	
١.	١.	_			_	١.	_				_		_			_	_	_			_	_	_		
1	4	8	4	12	F	4	6	4	12		5	10	5	25		2	6	2	19		3	7	3	11	
2	11	15	7	11		9	13	5	11		15	21	10	17		10	13	8	11		12	16	9	10	
3	18	22	7	11		18	22	9	12		25	29	10	20		17	21	7	11		19	22	7	13	
4	26	30	8	15	F	25	29	7	17		35	40	10	16		25	29	8	10		25	28	6	11	
5	34	37	8	13		33	36	8	11		43	48	8	25		32	34	7	11		32	37	7	11	
6	41	45		11		40	43	7	13		52	55	9	20	F	38	42	6	19		40	44	8	13	
7	48	54		15		46	50	6	15		59	63	7	25		47	50	9	23		47	50	7	14	
8	57	60		14		54	58	8	18		67	71	8	14		55	59	8	13		54	59	7	16	
9	64	67		10	F	62	66	8	16		75	80	8	15	F	62	66	7	14		64	68	10	19	F
10	71	74				69	72	7	20		84	89	9	15	F	69	72	7	13		71	75	7	21	
11						76	80	7	21	F	93	97	9	15		76	86	7	9		79	83	8	13	
											10	10													_
12						83	86	7	10		0	4	7			83	86	7	6		87	90	8	11	F
13						89	92	6	11							90	93	7	9	F	94	98	7	10	F
							10	-								0.7	10	_	40		10	10	-		
14						96	0 10	7	14							97 10	0	7	13		1	5	7		
15						10 3	7	7								4	10 8	7	7						
s			34	112		3		103	201				100	207		4	0	104	188				101	173	
3			34	112				103	14,				100	18,				104	13,				101	13,	
m			3,8	12,4				7,4	4				9,1	8				7,4	4				7,8	3	

Су	m M Nb LR				
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	0	0	0	0	
7	_				
8					
9					
10					
11					
12					
13					
14					
15					
S	0 0	0 0	0 0	0 0	0 0
		0,	0,	0,	0,
m	0,0 0,0	0 0,0	0 0,0	0 0,0	0 0,0

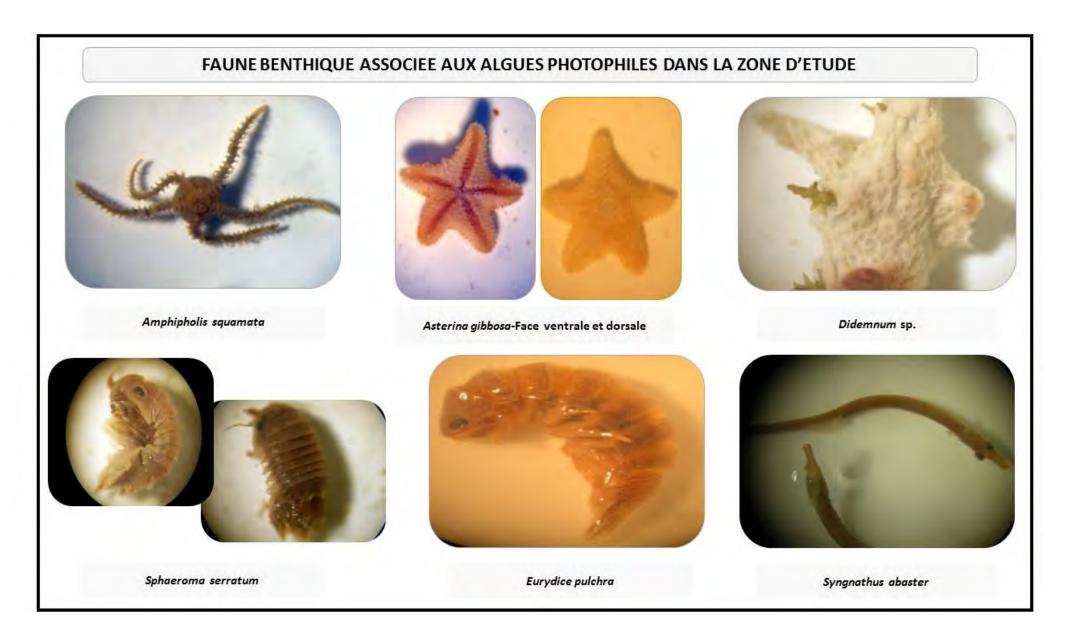
Synthèse	Moy	EcT	IC		
Nb. faisc.	5				
Rang m1	3,6	1	1		
Rang M1	7,4	1,7	1,5		
Nb. écaille	7,2	1,5	1,3		
Long. Rhi.	14,2	4,4	3,8		

LES ESPÈCES DE LA BIOCÉNOSE DES ALGUES PHOTOPHILES LES PLUS FREQUENTES DANS LA ZONE D'ETUDE

Amas de *Cystoseira foeniculacea* f. schiffneri en forme libre

Concrétionnements à Neogoniolithon brassicaflorida

Cystoseira foeniculacea


Dasycladus vermicularis et Anadyomene stellata sur concrétionnement

Cystoseira foeniculacea f. schiffneri entourée d'une prairie de Caulerpa prolifera

Padina pavonica et Laurencia obtusa

